Switching Devices: Soft Starters, Semiconductor Switching Devices, Control Devices, AS-I

$3 / 2$	Introduction
3/4	SIRIUS SC semiconductor switching devices General data
	Semiconductor relays
3/7	General data
3/8	22.5 mm semiconductor relays
3/13	45 mm semiconductor relays
	Semiconductor contactors
3/16	SIRIUS SC semiconductor contactors
	Function modules
3/25	General data
3/26	Converters
3/27	Load monitoring
3/28	Output regulators
	Semiconductor relays and contactors, function modules
3/29	Project planning aids
	SIRIUS/SIKOSTART soft starters
3/39	General data
	For standard applications
3/40	SIRIUS soft starters
3/53	SIKOSTART soft starters
	For advanced applications
3/62	SIKOSTART soft starters

For standard and advanced applications
Project planning aids

Motor management systems

SIMOCODE-DP motor protection and control devices
Current transformers for overload protection

LOGO! logic modules

General data
LOGO! modular basic variants
LOGO! modular pure variants
LOGO! modular extension modules
LOGO! modular communications
modules
LOGO!Contact LOGO!Soft

AS-Interface

System overview

Soft Starters, Semiconductor Switching/Control Devices, AS-I

Introduction

| Products at a glance | |
| :--- | :--- | :--- |

Soft Starters, Semiconductor Switching/Control Devices, AS-I

- SIMOCODE-DP comprises
- Basic unit
- Expansion module and
- Control module
- For use in low-voltage switchgear for motor control centers of the process industry; establishes the intelligent connection between the motor feeder and the process I\&C system
- Increases plant availability
- Saves costs during construction, commissioning and operation of the plant
- Multifunctional, electronic motor protection and plant monitoring
- Comprehensive motor and plant diagnostics
- Integrated control programs (instead of extensive hardware wiring)
- Open communication via PROFIBUS DP, the standard for fieldbus systems

Current transformers for overload protection	• Protection converters for activating overload relays
	• Ensures proportional current transfer up to a multiple of the primary rated current

LOGO! logic modules

LOGO! logic modules

- Compact, user-friendly, and low-cost solution for simple control tasks
- Universal:
- Building installation and wiring (lighting, shutters, awnings, doors, access control, barriers, ventilation systems, etc.)
- Cabinet installation
- Machine and device construction (pumps, small presses,
compressors, hydraulic lifts, conveyors ...)
- Special controls for conservatories and greenhouses
- Signal preprocessing for other controllers
- Flexible expansion depending on the application

LOGO! Modular basic variants	- With interface for connecting extension modules	6ED1 052-1	3/103
LOGO! Modular pure variants	- With integrated interface for connecting extension modules	6ED1 052-2	3/104
LOGO! Modular extension modules	- For connection to LOGO! Modular with digital inputs and outputs or analog inputs	6ED1 055-1	3/106
LOGO! Modular communications modules	- For communication between the LOGO! master and external EIB components via EIB.	6BK1 700-0	3/107
LOGO!Contact	- Switching module for switching resistive loads and motors directly	6ED1 057-4	3/108
LOGO!Soft	- Multilingual software for switching program generation for LOGO! on the PC	6ED1 058-0	3/109
AS-Interface			
System overview	- Digital and analog signals at plant or machine level can be transferred by AS-Interface in binary form - AS-Interface is the universal interface between the higher-level control levels and simple binary actuators and sensors		3/110

SIRIUS SC Semiconductor Switching Devices

General data

Overview

SIRIUS SC semiconductor switching devices

- Semiconductor relays
- Semiconductor contactors
- Function modules

SIRIUS SC - for almost unending activity

Conventional electromechanical switching devices are often overtaxed by the rise in the number of switching operations. A high switching frequency results in frequent failure and short replacement cycles. However, this does not have to be the case, because with the latest generation of our SIRIUS SC semiconductor switching devices we provide you with semiconductor relays and contactors with a particularly long service life - for almost unending activity even under the toughest conditions and under high mechanical load, but also in noise-sensitive areas.

Proved time and again in service

SIRIUS SC semiconductor switching devices have become firmly established in industrial use. They are used above all in applications where loads are switched frequently - mainly with resistive load controllers, with the control of electrical heat or the control of valves and motors in conveyor systems. In addition to its use in areas with high switching frequencies, thanks to its silent switching SIRIUS SC is also ideally suited to noise-sensitive areas such as offices or hospitals.

The most reliable solution for any application

Compared with mechanical switching devices, our SIRIUS SC semiconductor switching devices stand out because of their considerably higher service life. Thanks to the high product quality, their switching is extremely precise, reliable and above all insusceptible to faults. With its variable connection methods and a wide spread of control voltages, the SIRIUS SC family is universally applicable. Depending on the individual requirements of the application, our modular switching devices can also be quite easily expanded by the addition of standardized function modules.

Always on the sunny side with SIRIUS SC

Because SIRIUS SC offers even more:

- The space-saving and compact side-by-side mounting ensure reliable operation up to an ambient temperature of $+60^{\circ} \mathrm{C}$.
-Thanks to fast project planning and the ease of installation and start-up you save not only time but also expense.

Type	Semiconductor relays		Semiconductor contactors	Function modules			
	22.5 mm	45 mm		Converters	Load monitors		Power controllers
					Basic	Extended	
Use							
Simple use of existing semiconductor relays	\bigcirc	\checkmark	\bigcirc				
Complete "Ready to use"	\bigcirc	\bigcirc	\checkmark				
Space-saving	\checkmark		\checkmark	\checkmark	\checkmark		
Can be extended with modular function modules	\checkmark		\checkmark				
Frequent switching and monitoring of loads and semiconductor relays/semiconductor contactors	\checkmark		\checkmark		\checkmark	\checkmark	
Monitoring of more than 6 partial loads	\checkmark		\checkmark			ν	
Control of the heating power via an analog input	\checkmark		\checkmark	\checkmark			\checkmark
Power control	\checkmark		\checkmark				\checkmark
Mounting							
Mounting on standard mounting rail or mounting plate			\checkmark				
Snapped directly onto semiconductor relay or contactor For use with coolplate	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Cable routing							
Connection of load circuit as for controlgear	\checkmark		\checkmark				
Connection of load circuit from above		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark

Function is available
O Function is possible

General data

Benefits

- Considerable space savings thanks to a width of only 22.5 mm
- Variety of connection techniques: screw connection, springtype connection or ring terminal end, there is no problem - they are all finger-safe
- Flexible for all applications with function modules for retrofitting
- Possibility of fuseless short-circuit resistant design

Advantages:

- Saves time and costs with fast installation and commissioning, short setting-up times and easy wiring
- Extremely long life, low maintenance, rugged and reliable
- Space-saving and safe thanks to side-by-side mounting up to an ambient temperature of $+60^{\circ} \mathrm{C}$
- Modular design: standardized function modules and heat sinks can be used in conjunction with semiconductor relays to satisfy individual requirements
- Safety due to lifelong, vibration-resistant and shock-resistant spring-loaded terminal connection system even under tough conditions

Area of application

Applications

Example plastic machine industry:
Thanks to their high switching endurance, SIRIUS SC semiconductor switching devices are ideally suited for use in the control of electroheat. This is because the more precise the temperature regulation process has to be, the higher the switching frequency. The accurate regulation of electroheat is used for example in many processes in the plastic machine industry:

- Band heaters heat the extrudate to the correct temperature in plastic extruders
- Heat emitters heat plastic blanks to the correct temperature
- Heat drums dry plastic granules
- Heating channels keep molds at the correct temperature in order to manufacture different plastic parts without defects.

The powerful SIRIUS SC semiconductor relays and contactors can be used to control several heating loads at the same time. By using a load monitoring module the individual partial loads can easily be monitored, and in the event of a failure a signal is generated to be sent to the controller.
Protecting the semiconductor relays and semiconductor contactors with miniature circuit-breakers (B MCB)
Short-circuit protection and line protection with miniature circuitbreakers is easy to achieve with SIRIUS SC semiconductor relays and semiconductor contactors in comparison with designing load feeders with fuses. A special version of the semiconductor contactors can be protected against damage in the case of a short-circuit with a miniature circuit-breaker with type B tripping characteristic. This allows the low-cost and simple design of fuseless load feeders with full protection of the switching device.

Design

There is no typical design of a load feeder with semiconductor relays or semiconductor contactors; instead, the great variety of connection systems and control voltages offers universal application opportunities. SIRIUS SC semiconductor relays and semiconductor contactors can be installed in fuseless or fused feeders, as required.
There are special versions with which it is even possible to achieve short-circuit strength in a fuseless design.

Functions

Connection

All SIRIUS SC semiconductor switching devices are characterized by the great variety of connection methods. You can choose between the following connection techniques:

SIGUT connection system

The SIGUT connection system is the standard among industrial switching devices. Open terminals and a plus-minus screw are just two features of this technology. Two conductors of up to $6 \mathrm{~mm}^{2}$ can be connected in just one terminal. As a result, loads of up to 50 A can be connected.
Spring-loaded connection system
This innovative technology manages without any screw connection. This means that very high vibration resistance is achieved. Two conductors of up to $2.5 \mathrm{~mm}^{2}$ can be connected to each terminal. As a result, loads of up to 20 A can be dealt with.

Ring terminal end connection

The ring terminal end connection is equipped with an M5 screw. Ring terminal ends of up to $25 \mathrm{~mm}^{2}$ can be connected. In this way it is possible to connect even high powers with current intensities of up to 88 A safely. Finger safety is provided in this case too with a special cover.

Switching functions

In order to guarantee an optimized control method for different loads, the functionality of our semiconductor switching devices can be adapted accordingly.
The "zero-point switching" method has proved to be ideal for resistive loads, i.e. where the power semiconductor is activated at zero voltage.
For inductive loads, on the other hand, for example in the case of valves, it is better to go with "instantaneous switching". By distributing the ON point over the entire sine curve of the mains voltage, disturbances are reduced to a minimum.

Performance characteristics

The performance of the semiconductor switching devices is substantially determined by the type of power semiconductors used and the internal design. In the case of the SIRIUS SC semiconductor contactors and semiconductor relays, only thyristors are used in place of less powerful Triacs.
Two of the most important features of thyristors are the blocking voltage and the maximum load integral:

Blocking voltage

Thyristors with a high blocking voltage can also be operated without difficulty in power systems with high interference voltages. Separate protective measures, such as a protective circuit with a varistor, are not necessary in most cases.
With SIRIUS SC, for example, thyristors with 800 V blocking voltage are fitted for operation in power systems up to 230 V . Thyristors with up to 1600 V are used for power systems with higher voltages.

Maximum load integral

One of the purposes of specifying the maximum load integral $(P t)$ is to determine the rating of the short-circuit protection. Only a large power semiconductor with a correspondingly high Ft value can be given appropriate protection against destruction from a short-circuit by means of a protective device matched to the application. However, SIRIUS SC is also characterized by the optimum matching of the thyristors ($R t$ value) with the rated currents. The rated currents specified on the devices in conformance with EN 60947-4-3 were confirmed by extensive testing. Further information is available on the Internet at: www.siemens.de/siriussc

SIRIUS SC Semiconductor Switching Devices

General data

Further information

Notes on integration in the load feeders

The SIRIUS SC semiconductor switching devices are very easy to integrate into the load feeders thanks to their industrial connection technology and design.
Particular attention must however be paid to the circumstances of the installation and ambient conditions, as the performance of the semiconductor switching devices is largely dependent on these. Depending on the version, certain restrictions must be observed. Detailed information, for example in relation to semiconductor contactors about the minimum spacing and to semiconductor relays about the choice of heat sink, is given in the product data sheets and the technical specifications in the A\&D Mall.
Despite the rugged power semiconductors that are used, semiconductor switching devices respond more sensitively to shortcircuits in the load feeder. Consequently, special precautions have to be taken against destruction, depending on the type of design.
Siemens generally recommends using SITOR semiconductor protection fuses. These fuses also provide protection against destruction in the event of a short-circuit even when the semiconductor contactors and semiconductor relays are fully utilized.

Selection and ordering data

Accessories

	Designation	Labeling area/color	DT	Order No.	PS*	Weight per PU approx.
		$\begin{aligned} & \mathrm{W} \times \mathrm{H} \\ & \mathrm{~mm} \times \mathrm{mm} \end{aligned}$				kg
Blank identification plates						
	Item code labels for "SIRIUS" ${ }^{1)}$	10×7 pastel turquoise	D	3RT19 00-1SB10	$\begin{array}{r} 816 \\ \text { units } \end{array}$	0.030
		20×7 pastel turquoise	A	3RT19 00-1SB20	$\begin{array}{r} 340 \\ \text { units } \end{array}$	0.067
	"SIRIUS" labels for sticking	19×6 pastel turquoise	D	3RT19 00-1SB60	$\begin{aligned} & 4700 \\ & \text { units } \end{aligned}$	0.003
		$\begin{aligned} & 19 \times 6 \\ & \text { zinc yellow } \end{aligned}$	C	3RT19 00-1SD60	4700	0.003
Item code labels 1 frame = 20 labels					units	

1) Computer labeling system for individual labeling of item code labels available from:
murrplastik Systemtechnik GmbH (see Appendix -> External Partners).

SIRIUS SC Semiconductor Switching Devices
 Semiconductor Relays

General data

Overview

Semiconductor relays

SIRIUS SC semiconductor relays are suitable for surface mounting on existing cooling surfaces. Installation is quick and easy, involving just two screws. The special technology of the power semiconductor ensures there is excellent thermal contact with the heat sink. Depending on the nature of the heat sink, the capacity reaches up to 88 A on resistive loads. The 3RF21 semiconductor relays can be expanded with various function modules to adapt them to individual applications.
The semiconductor relays are available in 2 different widths:

- 3RF21 semiconductor relay with a width of 22.5 mm
- 3RF20 semiconductor relay with a width of 45 mm

Both variants are only available in the "zero-point switching" version. This standard version is ideally suited for operation with resistive loads.

Further information

Notes on selection

These notes are intended for general orientation and will no doubt be sufficient for most applications. If the installation conditions differ significantly from the examples described here, you can contact our Technical Assistance team for further help.

Telephone: +49 9131743833
Fax: $\quad+499131742899$
e-mail: nst.technical-assistance@siemens.com
For more information on the Internet go to www.siemens.de/lowvoltage/technical-assistance

Selecting semiconductor relays

When selecting semiconductor relays, in addition to information about the power system, the load and the ambient conditions it is also necessary to know details of the planned design. The semiconductor relays can only conform to their specific technical specifications if they are mounted with appropriate care on an adequately dimensioned heat sink. The following procedure is recommended:

- Determine the rated current of the load and the mains voltage
- Select the relay design and choose a semiconductor relay with higher rated current than the load
- Determine the thermal resistance of the proposed heat sink
- Check the correct relay size with the aid of the diagrams

For more information on the Internet go to
www.siemens.com/siriussc

SIRIUS SC Semiconductor Switching Devices
 Semiconductor Relays

22.5 mm semiconductor relays

Overview

22.5 mm semiconductor relays

With its compact design, which stays the same even at currents of up to 88 A, the 3RF21 semiconductor relay is the ultimate in space-saving construction, at a width of 22.5 mm . The logical connection arrangement, with the power infeed from above and connection of the load from below, ensures tidy installation in the control cabinet.

Technical specifications

Type		3RF21 ..-1....	3RF21 ..-2....	3RF21 ..-3....
General data				
Ambient temperature during operation, derating from $40^{\circ} \mathrm{C}$ when stored	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -55 \ldots+80 \end{aligned}$		
Site altitude	m	0 ... 1000; derating from 1000		
Shock resistance acc. to IEC 60068-2-27	g / ms	15/11		
Vibration resistance acc. to IEC 60068-2-6	g	2		
Degree of protection		IP20		
Electromagnetic compatibility (EMC)				
Emitted interference - Conducted interference voltage acc. to IEC 60947-4-3 - Emitted, high-frequency interference voltage acc. to IEC 60947-4-3		Class A for industrial applicatio Class A for industrial applicatio		
Noise immunity - Electrostatic discharge acc. to IEC 61000-4-2 (corresponds to degree of severity 3) - Induced RF fields acc. to IEC 61000-4-6 - Burst acc. to IEC 61000-4-4 - Surge acc. to IEC 61000-4-5	kV MHz kV kV	Contact discharge 4; air discharge 8; behavior criterion 2		
Connection technique		Screw-type connection	Spring-loaded connection	Ring cable connection
Main contact connection Conductor cross-section Solid Finely stranded with end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times(1.5 \ldots 2.5), 2 \times(2.5 \ldots 6) \\ & 2 \times(1.5 \ldots 2.5), 2 \times(2.5 \ldots 6) \\ & 1 \times 10 \end{aligned}$	$\left.\begin{array}{l} 2 \times(0,5 \ldots \\ 2 \times(0.5 \ldots \end{array}\right)$	
Finely stranded without end sleeves Solid or stranded AWG conductors Insulation stripping length Terminal screw - Tightening torque	mm^{2} AWG mm Nm lb.in	$\begin{aligned} & 2 \times(14 \ldots 10) \\ & 10 \\ & M 4 \\ & 2 \ldots 2.5 \\ & 18 \ldots 22 \end{aligned}$	$\begin{aligned} & 2 \times(0.5 \ldots 2.5) \\ & 2 \times(18 \ldots 14) \\ & 10 \end{aligned}$	$\begin{aligned} & \text { M } 5 \\ & 2 \ldots 2.5 \\ & 18 \ldots 22 \end{aligned}$
Cable lug - DIN - JIS				$\begin{aligned} & \text { DIN } 46234 \\ & -5-2.5,-5-6,-5-10,-5-16,-5-25 \\ & \text { JIS C } 2805 \text { R 2-5, 5.5-5, 8-5, 14-5 } \end{aligned}$
Auxiliary/control contact connections Conductor cross-section Insulation stripping length Terminal screw - Tightening torque	mm^{2} AWG mm Nm lb.in	$\begin{aligned} & 1 \times(0.5 \ldots 2.5) ; 2 \times(0.5 \ldots 1) \\ & 20 \ldots 12 \\ & 7 \\ & M 3 \\ & 0.5 \ldots 0.6 \\ & 4.5 \ldots 5.3 \end{aligned}$	$0.5 \ldots 1.5$ $20 \ldots$ 12 10 - - -	$\begin{aligned} & 1 \times(0.5 \ldots 2.5) ; 2 x(0.5 \ldots 1) \\ & 20 \ldots 12 \\ & 7 \\ & M 3 \\ & 0.5 \ldots 0.6 \\ & 4.5 \ldots 5.3 \end{aligned}$
Type		3RF21 ..-... 2	3RF21 ..-.... 4	3RF21 ..-... 6
Main circuit				
Rated operational voltage U_{e} - Tolerance - Rated frequency	$\begin{aligned} & V \\ & \% \\ & H z \end{aligned}$	$\begin{aligned} & 24 \ldots 230 \\ & -15 /+10 \\ & 50 / 60 \end{aligned}$	$230 . . .460$	$400 . .600$
Rated insulation voltage U_{i}	V	600		
Blocking voltage	V	800	1200	1600
Rate of voltage rise	V/ $/$ s	1000		

SIRIUS SC Semiconductor Switching Devices

Semiconductor Relays
22.5 mm semiconductor relays

Order No.	$\begin{aligned} & I_{\max }^{11} \\ & \text { at } R_{\text {thha }} / T_{u}=40^{\circ} \mathrm{C} \end{aligned}$		I_{e} to IEC 60947-4-3 at $\mathrm{R}_{\text {thnal }} / T_{\mathrm{u}}=40^{\circ} \mathrm{C}$		$\begin{aligned} & I_{e} \text { to UL/CSA } \\ & \text { at } R_{\text {thha }} / T_{u}=50^{\circ} \mathrm{C} \end{aligned}$		Power loss for $I_{\text {max }}$	Minimum load current	Leakage current
	A	K/W	A	K/W	A	K/W	W	A	mA
Main circuit									
3RF21 20-.....	20	2.0	20	2.0	20	1.7	28.6	0.5	10
3RF21 30-1....	30	1.1	30	1.1	30	0.88	44.2	0.5	10
3RF21 50-1.... 3RF21 50-2.... 3RF21 50-3....	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 0.68 \\ & 0.68 \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.68 \\ & 4.2 \\ & 0.68 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.53 \\ & 3.3 \\ & 0.53 \\ & \hline \end{aligned}$	$\begin{aligned} & 66 \\ & 66 \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$
3RF21 70-1....	70	0.4	50	0.95	50	0.8	94	0.5	10
3RF21 90-1.... 3RF21 90-2.... 3RF21 90-3....	$\begin{aligned} & 88 \\ & 88 \\ & 88 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 88 \end{aligned}$	$\begin{aligned} & \hline 1.25 \\ & 5.0 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 83 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 4.0 \\ & 0.29 \end{aligned}$	$\begin{aligned} & 118 \\ & 118 \\ & 118 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$

1) I max provides information about the performance of the semiconductor relay. The actual permitted operational current I_{e} can be smaller depending on the connection method and cooling conditions.

Order No.	Rated impulse withstand capacity $I_{\text {tsm }}$	$P^{2} t$ value
	A	$A^{2} \mathrm{~s}$
Main circuit		
3RF21 20-.....	200	200
3RF21 30-.AA.2	300	450
3RF21 30-.AA.4	300	450
3RF21 30-.AA.6	400	800
3RF21 50-....	600	1800
3RF21 70.-AA.2	1200	7200
3RF21 70.AA.4	1200	7200
3RF21 70-.AA.6	1150	6600
3RF21 90-....	1150	6600

Type		3RF21 ..-... 0	3RF21 ..-... 2
Control circuit			
Method of operation		DC operation	AC operation
Rated control supply voltage U_{s}	V	24 to EN 61131-2	110 ... 230
Max. rated control voltage	V	30	253
Rated control current at $U_{\text {s }}$	mA	15	6
Rated frequency of the control supply voltage	Hz	-	50/60
Response voltage for tripping current	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 15 \\ & 2 \end{aligned}$	$\begin{aligned} & 90 \\ & 20 \end{aligned}$
Drop-out voltage	V	5	40
Operating times closing time opening time	ms ms	1 additionally max. one half-wave 1 additionally max. one half-wave	40 additionally max. one half-wave 40 additionally max. one half-wave

SIRIUS SC Semiconductor Switching Devices

Semiconductor Relays
22.5 mm semiconductor relays

Order No.	Accessories		
	Converters	Load monitors	
			Extended
Type current $=20 \mathrm{~A}$			
$\begin{aligned} & \text { 3RF21 2.-1..02 } \\ & \text { 3RF21 2.-1..04 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OFA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA13 } \\ & \text { 3RF29 20-0GA16 } \end{aligned}$
$\begin{aligned} & \text { 3RF21 } 2 .-1 . .22 \\ & \text { 3RF21 2.-1.. } 24 \end{aligned}$	-	-	$\begin{aligned} & \text { 3RF29 20-0GA33 } \\ & \text { 3RF29 20-0GA36 } \end{aligned}$
$\begin{aligned} & \hline \text { 3RF21 2.-2..02 } \\ & \text { 3RF21 2.-2..04 } \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18	-	-
$\begin{aligned} & \hline \text { 3RF21 2.-3..02 } \\ & \text { 3RF21 2.-3..04 } \end{aligned}$	3RF29 00-0EA18 3RF29 00-0FA18	-	3RF29 20-0GA13 3RF29 20-0GA16
$\begin{aligned} & \hline \text { 3RF21 2.-3..22 } \\ & \text { 3RF21 2.-3..24 } \end{aligned}$	-	-	$\begin{aligned} & \text { 3RF29 20-0GA33 } \\ & \text { 3RF29 20-0GA36 } \end{aligned}$
Type current = 30 A			
3RF21 3.-1.. 02 3RF21 3.-1.. 04 3RF21 3.-1.. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16
$\begin{aligned} & \hline \text { 3RF21 } 3 .-1 . .22 \\ & \text { 3RF21 } 3 .-1 . .24 \\ & \text { 3RF21 } 3 .-1 . .26 \\ & \hline \end{aligned}$			3RF29 50-0GA33 3RF29 50-0GA36 3RF29 50-0GA36
Type current $=\mathbf{5 0} \mathrm{A}$			
$\begin{aligned} & \text { 3RF21 5.-1..02 } \\ & \text { 3RF21 5.-1..04 } \\ & \text { 3RF21 5.-1..06 } \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16
3RF21 5.-1.. 22 3RF21 5.-1.. 24 3RF21 5.-1.. 26		-	3RF29 50-0GA33 3RF29 50-0GA36 3RF29 50-0GA36
3RF21 5.-2.. 02 3RF21 5.-2.. 04 3RF21 5.-2.. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18		
$\begin{aligned} & \hline \text { 3RF21 5.-3..02 } \\ & \text { 3RF21 5.-3..06 } \\ & \text { 3RF21 5.-3..04 } \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	-	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16
3RF21 5.-3.. 22 3RF21 5.-3.. 24 3RF21 5.-3.. 26	-	-	3RF29 50-0GA33 3RF29 50-0GA36 3RF29 50-0GA36
Type current $=70 \mathrm{~A}$			
3RF21 7.-1.. 02 3RF21 7.-1.. 04 3RF21 7.-1.. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 90-0GA13 3RF29 90-0GA16 3RF29 90-0GA16
$\begin{aligned} & \hline \text { 3RF21 7.-1..22 } \\ & \text { 3RF21 7.-1..24 } \\ & \text { 3RF21 7.-1..26 } \end{aligned}$	-		3RF29 90-0GA33 3RF29 90-0GA36 3RF29 90-0GA36
Type current $=90 \mathrm{~A}$			
$\begin{aligned} & \text { 3RF21 } 9 .-1 . .02 \\ & \text { 3RF21 9.-1..04 } \\ & \text { 3RF21 9.-1..06 } \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 90-0GA13 3RF29 90-0GA16 3RF29 90-OGA16
$\begin{aligned} & \text { 3RF21 } 9 .-1 . .22 \\ & \text { 3RF21 } 9 .-1 . .24 \\ & \text { 3RF21 9.-1.. } 26 \end{aligned}$	-	-	3RF29 90-0GA33 3RF29 90-0GA36 3RF29 90-0GA36
3RF21 9.-2.. 02 3RF21 9.-2.. 06 3RF21 9.-2.. 04	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	-	--
$\begin{aligned} & \hline \text { 3RF21 9.-3..02 } \\ & \text { 3RF21 9.-3..04 } \\ & \text { 3RF21 9.-3..06 } \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	-	3RF29 90-0GA13 3RF29 90-0GA16 3RF29 90-0GA16
$\begin{aligned} & \text { 3RF21 9.-3.. } 22 \\ & \text { 3RF21 9.-3..26 } \\ & \text { 3RF21 9.-3..24 } \end{aligned}$	-	-	3RF29 90-0GA33 3RF29 90-0GA36 3RF29 90-0GA36

SIRIUS SC Semiconductor Switching Devices
 Semiconductor Relays

22.5 mm semiconductor relays

Fused design with semiconductor protection

(similar to type of coordination "2")1)

The semiconductor protection for the SIRIUS SC controlgear can be implemented with different protective devices. This allows protection by means of LV HRC fuses of operational class $\mathrm{gL} / \mathrm{gG}$ or miniature circuit-breakers. Siemens recommends the use of special SITOR semiconductor fuses. The table below lists the maximum permissible fuses for each SIRIUS SC controlgear.

If a fuse is used with a higher rated current than specified, semiconductor protection is no longer guaranteed. However, smaller fuses with a lower rated current for the load can be used without problems.
For protective devices with operational class gL/gG and for 3NE1 SITOR full range fuses, the minimum cross-sections for the conductors to be protected must be taken into account.

Order No.	All-range fuse LV design gR/SITOR 3NE1	Semiconductor protection fuse Cylindrical design			Cable and line protection fuse				
					LV design	Cylindrical de			DIAZED quick
		$10 \times 38 \mathrm{~mm}$ aR/SITOR 3NC1 0	$14 \times 51 \mathrm{~mm}$ aR/SITOR 3NC1 4	$22 \times 58 \mathrm{~mm}$ aR/SITOR 3NC2 2	gL/gG/3NA	$\begin{aligned} & 10 \times 38 \mathrm{~mm} \\ & \mathrm{gL} / \mathrm{gG} / 3 \mathrm{NW} \end{aligned}$	$14 \times 51 \mathrm{~mm}$ gL/gG/3NW	$\begin{aligned} & 22 \times 58 \mathrm{~mm} \\ & \mathrm{gL} / \mathrm{gG} / 3 \mathrm{NW} \end{aligned}$	5SB
3RF21 2.-... 2	3NE1 814-0	3NC1 020	3NC1420	3NC2 220	3NA2 803	3NW6 001-1	3NW6 101-1	-	5SB1 71
3RF21 2.-... 4	3NE1 813-0	3NC1 016	3NC1 420	3NC2 220	3NA2 801	-	3NW6 101-1	-	5SB1 41
3RF21 3.-... 2	3NE1 815-0	3NC1 032	3NC1432	3NC2 232	3NA2 803	-	3NW6 103-1	-	5SB3 11
3RF21 3.-... 4	3NE1 815-0	3NC1 025	3NC1 432	3NC2 232	3NA2 803	-	3NW6 101-1	-	5SB1 71
3RF21 3.-... 6	3NE1 815-0	3NC1 032	3NC1432	3NC2 232	3NA2 803-6	-	-	-	-
3RF21 5.-... 2	3NE1 817-0	-	3NC1 450	3NC2 250	3NA2 810	-	3NW6 107-1	3NW6 207-1	5SB3 21
3RF21 5.-... 4	3NE1 802-0	-	3NC1450	3NC2 250	3NA2 807	-	-	3NW6 205-1	5SB3 11
3RF21 5.-... 6	3NE1 803-0	-	3NC1 450	3NC2 250	3NA2 807-6	-	-	-	
3RF21 7.-....2)	3NE1 820-0	-	-		3NA2 817	-	-	3NW6 217-1	5SB3 31
3RF21 7.-.....42)	3NE1 020-2	-	-	$\text { 3NC2 } 280$	$\text { 3NA2 } 812$	-	-	3NW6 212-1	5SB3 21
3RF21 7.-....6 ${ }^{2)}$	3NE1 020-2	-	-	3NC2 280	3NA2 812-6	-	-		
3RF21 9.-....2)	3NE1 021-2	-	-	3NC2 200	3NA2 817	-	-	3NW6 217-1	5SB3 31
3RF21 9.-....4 ${ }^{2)}$	3NE1 021-2	-	-	3NC2 280	3NA2 812	-	-	3NW5 212-1	5SB3 21
3RF21 9.-...6 ${ }^{2)}$	3NE1 020-2	-	-	3NC2 280	3NA2 812-6	-	-		

1) Type of coordination "2" acc. to EN 60947-4-1:

In the event of a short-circuit, the controlgear in the load feeder must not endanger persons or the installation. They must be suitable for further operation. For fused configurations, the protective device must be replaced.
2) These versions can also be protected against short-circuit with miniature circuit-breakers as described on page 3/16.

SIRIUS SC Semiconductor Switching Devices

Semiconductor Relays

22.5 mm semiconductor relays

Selection and ordering data

Order No. extension for

rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$
DC 24 V acc. to EN 61131-2

Other rated control supply voltages on request.

1) The type current provides information about the performance of the semiconductor relay. The actual permitted operational current I_{e} can be smaller depending on the connection method and cooling conditions.
2) Please note that this version can only be used for a rated current of up to 50 A and a conductor cross-section of $10 \mathrm{~mm}^{2}$.
3) Please note that this version can only be used for a rated current of up to 20 A and a conductor cross-section of $2.5 \mathrm{~mm}^{2}$

	Version	DT	Order No.	PS*	Weight per PU approx
					kg
Accessories					
	Screwdriver for spring-loaded connection system	A	8WA2 880	1 unit	0.034
	Terminal cover for 3RF21 semiconductor relays and 3RF23 semiconductor contactors with ring terminal end (after simple adaptation, this terminal cover can also be used for screw connection).	A	3RF29 00-3PA88	$\begin{array}{r} 10 \\ \text { units } \end{array}$	0.010

SIRIUS SC Semiconductor Switching Devices
 Semiconductor Relays

45 mm semiconductor relays

Overview

45 mm semiconductor relays

The semiconductor relays with a width of 45 mm provide for connection of the power supply lead and the load from above. This ing arrangements. The connection of the control cable also saves space in much the same way as the 22.5 mm design, as it is simply plugged on.

Technical specifications

Type		3RF20
General data		
Ambient temperature during operation, derating at $40^{\circ} \mathrm{C}$ when stored	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -55 \ldots+80 \end{aligned}$
Site altitude	m	0 ... 1000; derating from 1000
Shock resistance acc. to IEC 60068-2-27	g / ms	15/11
Vibration resistance acc. to IEC 60068-2-6	g	2
Degree of protection		IP20
Electromagnetic compatibility (EMC) Emitted interference - Conducted interference voltage IEC acc. to 60947-4-3 - Emitted, high-frequency interference voltage acc. to IEC 60947-4-3		Class A for industrial applications Class A for industrial applications
Noise immunity - Electrostatic discharge acc. to IEC 61000-4-2 (corresponds to degree of severity 3) - Induced RF fields acc. to IEC 61000-4-6 - Burst acc. to IEC 61000-4-4 - Surge acc. to IEC 61000-4-5	kV MHz kV kV	Contact discharge 4; air discharge 8; behavior criterion 2 $0.15 \ldots 80 ; 140 \mathrm{~dB} \mu \mathrm{~V}$; behavior criterion 1 $2 / 5.0 \mathrm{kHz}$; behavior criterion 1 Conductor - ground 2; conductor - conductor 1; behavior criterion 2
Connection, main contacts, screw connection Conductor cross-section Solid Finely stranded with end sleeve Solid or stranded AWG conductors Insulation stripping length Terminal screw - Tightening torque	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{AWG} \\ & \mathrm{~mm} \\ & \mathrm{Nm} \\ & \mathrm{lb} . \mathrm{in} \end{aligned}$	$\begin{aligned} & 2 \times(1.5 \ldots 2.5) ; 2 \times(2.5 \ldots 6) \\ & 2 \times(1.5 \ldots 2.5) ; 2 \times(2.5 \ldots 6) ; 1 \times 10 \\ & 2 \times(14 \ldots 10) \\ & 10 \\ & M 4 \\ & 2 \ldots 2.5 \\ & 18 \ldots 22 \end{aligned}$
Connection, auxiliary/control contacts, screw connection Conductor cross-section Insulation stripping length Terminal screw - Tightening torque	mm^{2} mm Nm lb.in	$\begin{aligned} & 1 \times(0.5 \ldots 2.5) ; 2 \times(0.5 \ldots 1.0) ; \text { AWG } 20 \ldots 12 \\ & 7 \\ & M 3 \\ & 0.5 \ldots 0.6 \\ & 4.5 \ldots 5.3 \end{aligned}$

Type		3RF20 .0-1AA. 2	3RF20 .0-1AA. 4	3RF20 .0-1AA. 6
Main circuit				
Rated operational voltage U_{e} - Tolerance - Rated frequency	$\begin{aligned} & \text { V } \\ & \% \\ & H z \end{aligned}$	$\begin{aligned} & 24 \ldots 230 \\ & -15 /+10 \\ & 50 / 60 \end{aligned}$	$230 . . .460$	$400 \ldots 600$
Rated insulation voltage U_{i}	V	600		
Blocking voltage	V	800	1200	1600
Rage of voltage rise	$\mathrm{V} / \mathrm{\mu s}$	1000		

SIRIUS SC Semiconductor Switching Devices

Semiconductor Relays

45 mm semiconductor relays

Order No.	$\begin{aligned} & I_{\text {max }}{ }^{1)} \\ & \text { at } R_{\text {thha }} / T_{u}=40^{\circ} \mathrm{C} \end{aligned}$		I_{e} to IEC 60947-4-3 at $\mathrm{R}_{\text {thnal }} / T_{\mathrm{U}}=40^{\circ} \mathrm{C}$		I_{e} to UL/CSA at $\mathrm{R}_{\text {thha }} / T_{\mathrm{u}}=50^{\circ} \mathrm{C}$		Power loss for $I_{\text {max }}$	Minimum load current	Leakage current
	A	K/W	A	K/W	A	K/W	W	A	mA
Main circuit									
3RF20 20-1AA..	20	2.0	20	2.0	20	1.7	28.6	0.5	10
3RF20 30-1AA..	30	1.1	30	1.1	30	0.88	44.2	0.5	10
3RF20 50-1AA..	50	0.68	50	0.68	50	0.53	66	0.5	10
3RF20 70-1AA..	70	0.4	50	0.95	50	0.8	94	0.5	10
3RF20 90-1AA..	88	0.33	50	1.25	50	1.02	118	0.5	10

1) I Imax provides information about the performance of the semiconductor
relay. The actual permitted operational current $I_{\text {e can }}$ ca be smaller depend-
ing on the connection method and cooling conditions.

Order No.	Rated impulse withstand capacity Ism	Ptvalue
	A	$A^{2} s$
Main circuit		
3RF20 20-1AA..	200	200
3RF20 30-1AA. 2	300	450
3RF20 30-1AA. 4	300	450
3RF20 30-1AA. 6	400	800
3RF20 50-1AA..	600	1800
3RF20 70-1AA. 2	1200	7200
3RF20 70-1AA. 4	1200	7200
3RF20 70-1AA. 6	1150	6600
3RF20 90-1AA..	1150	6600

Type		3RF20 .0-1AAO.	3RF20 .0-1AA2.
Control circuit			
Method of operation		DC operation	AC operation
Rated control supply voltage $U_{\text {s }}$	V	24 acc. to EN 61131-2	110 ... 230
Max. rated control voltage	V	30	253
Rated control current at U_{s}	mA	15	6
Rated frequency of the control supply voltage	Hz	-	50/60
Response voltage for tripping current	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 15 \\ & 2 \end{aligned}$	$\begin{aligned} & 90 \\ & 2 \end{aligned}$
Drop-out voltage	V	5	40
Operating times closing time opening time	ms ms	1 additional max. one half-wave 1 additional max. one half-wave	40 additional max. one half-wave 40 additional max. one half-wave

SIRIUS SC Semiconductor Switching Devices
 Semiconductor Relays

45 mm semiconductor relays

Fused design with semiconductor protection

 (similar to type of coordination " 2 " ${ }^{11}$)The semiconductor protection for the SIRIUS SC control gear can be used with different protective devices. This allows protection by means of LV HRC fuses of operational class $\mathrm{gL} / \mathrm{gG}$ or miniature circuit-breakers. Siemens recommends the use of special SITOR semiconductor fuses. The table below lists the maximum permissible fuses for each SIRIUS SC controlgear.

If a fuse is used with a higher rated current than specified, semiconductor protection is no longer guaranteed. However, smaller fuses with a lower rated current for the load can be used without problems.
For protective devices with operational class gL/gG and for SITOR full range fuses 3NE1, the minimum cross-sections for the conductor to be connected must be taken into account.

Order No.	All-range fuse LV design gR/SITOR 3NE1	Semiconductor protection fuse Cylindrical design			Cable and line protection fuse				DIAZED quick 5SB
					LV design gL/gG/3NA	Cylindrical design			
		$10 \times 38 \mathrm{~mm}$ aR/SITOR 3NC1 0	$14 \times 51 \mathrm{~mm}$ aR/SITOR 3NC1 4	$22 \times 58 \mathrm{~mm}$ aR/SITOR 3NC2 2		$10 \times 38 \mathrm{~mm}$ gL/gG 3NW	$14 \times 51 \mathrm{~mm}$ gL/gG 3NW	$22 \times 58 \mathrm{~mm}$ gL/gG 3NW	
3RF20 20-1AA. 2	3NE1 814-0	3NC1 020	3NC1420	3NC2 220	3NA2 803	3NW6 001-1	3NW6 101-1	-	5SB171
3RF20 20-1AA. 4	3NE1 813-0	3NC1 016	3NC1 420	3NC2 220	3NA2 801	-	3NW6 101-1	-	5SB1 41
3RF20 30-1AA. 2	3NE1 815-0	3NC1 032	3NC1 432	3NC2 232	3NA2 803	-	3NW6 103-1	-	5SB3 11
3RF20 30-1AA. 4	3NE1 815-0	3NC1 025	3NC1432	3NC2 232	3NA2 803	-	3NW6 101-1	-	5SB1 71
3RF20 30-1AA. 6	3NE1 815-0	3NC1 032	3NC1 432	3NC2 232	3NA2 803-6	-	-	-	-
3RF20 50-1AA. 2	3NE1 817-0	-	3NC1 450	3NC2 250	3NA2 810	-	3NW6 107-1	3NW6 207-1	5SB3 21
3RF20 50-1AA. 4	3NE1 802-0	-	3NC1 450	3NC2 250	3NA2 807	-	-	3NW6 205-1	5SB3 11
3RF20 50-1AA. 6	3NE1 803-0	-	3NC1 450	3NC2 250	3NA2 807-6	-	-	-	-
3RF20 70-1AA.2 ${ }^{2}$	3NE1 820-0	-	-	3NC2 280	3NA2 817	-	-	3NW6 217-1	5SB3 31
3RF20 70-1AA.4 ${ }^{2}$	3NE1 020-2	-	-	3NC2 280	3NA2 812	-	-	3NW6 212-1	5SB3 21
3RF20 70-1AA.6 ${ }^{2}$	3NE1 020-2	-	-	3NC2 280	3NA2 812-6	-	-	-	
3RF20 90-1AA. ${ }^{2)}$	3NE1 021-2	-	-	3NC2 200	3NA2 817	-	-	3NW6 217-1	5SB3 31
3RF20 90-1AA.4 ${ }^{2}$	3NE1 021-2	-	-	3NC2 280	3NA2 812	-	-	3NW6 212-1	5SB3 21
3RF20 90-1AA.6 ${ }^{2}$	3NE1 020-2	-	-	3NC2 280	3NA2 812-6	-	-		

1) Type of coordination "2" acc. to EN 60947-4-1:

In the event of a short-circuit, the control gear in the load feeder must not endanger persons or the installation. They must be suitable for further operation. For fused configurations, the protective device must be replaced.
2) These versions can also be protected against short-circuit with miniature circuit-breakers as described on page 3/16.

Selection and ordering data

Order No. extension for rated control supply voltage $\boldsymbol{U}_{\mathrm{s}}$
DC 24 V acc. to EN 61131-2
AC 110 V ... 230 V
Other rated control supply voltages on request.

1) The type current provides information about the performance of the semiconductor relay. The actual permitted operational current $/ \mathrm{e}$ can be smaller depending on the connection method and cooling conditions.
2) Please note that this version can only be used for a rated current of up to 50 A and a conductor cross-section of $10 \mathrm{~mm}^{2}$

SIRIUS SC Semiconductor Switching Devices
 Semiconductor Contactors

SIRIUS SC semiconductor contactors

Overview

The complete self-contained units consist of a semiconductor relay plus optimized heat sink, and are therefore ready to use. They offer defined rated currents to make selection as easy as possible. Depending on the version, current intensities of up to 88 A are achieved. Like all of our semiconductor switching devices, one of their particular advantages is their compact and space-saving design. With their insulated mounting foot they can easily be snapped onto a standard mounting rail, or they can be mounted on carrier plates with fixing screws. This insulation enables them to be used in circuits with protective extra-low voltage (PELV) or safety extra-low voltage (SELV) in building engineering. For other applications, such as for extended personal safety, the heat sink can be grounded through a screw connection.

Version for resistive loads, "zero-point switching"

This standard version is often used for switching space heaters on and off.

Version for inductive loads, "instantaneous switching"

In this version the semiconductor contactor is specifically matched to inductive loads. Whether it is a matter of frequent actuation of the valves in a filling plant or starting and stopping small drives in packet distribution systems, operation is carried out safely and noiselessly.

Special "low noise" version

Thanks to a special control circuit, this special design can be used in public networks up to 16 A without any additional measures such as interference suppressor filters. As a result it conforms to limit value curve class B in accordance with EN 60947-4-3 in terms of emitted interference.

Special "short-circuit" version

Skilful matching of the power semiconductor with the performance of the semiconductor contactor means that "short-circuit strength" can be achieved with a standard miniature circuitbreaker. In combination with a B-type MCB or a conventional fuse, the result is a short-circuit resistant feeder.

In order to achieve problem-free short-circuit protection by means of miniature circuit-breakers, however, certain boundary conditions must be observed. As the magnitude and duration of the short-circuit current are determined not only by the
short-circuit breaking response of the miniature circuit-breaker but also the properties of the wiring system, such as the internal
resistance of the input to the network and damping by switching devices and cables, particular attention must also be paid to these parameters. The necessary cable lengths are therefore shown for the main factor, the conductor resistance, in the table below.

The following miniature circuit-breakers with a B characteristic and 10 kA breaking capacity protect the 3RF2320-.DA.. semiconductor contactors in the event of short-circuits on the load and the specified conductor cross-sections and lengths:

| Rated current of
 miniature circuit-
 breakers | Example
 of type | Max.
 conductor
 cross-section | Min. cable
 length from
 contactor to
 load |
| :--- | :--- | :--- | :--- | :--- |
| 6 A | $5 \mathrm{SY} 4106-6$ | $1 \mathrm{~mm}^{2}$ | 5 m |
| 10 A | $5 \mathrm{SY} 4110-6$ | $1.5 \mathrm{~mm}^{2}$ | 8 m |
| 16 A | $5 \mathrm{SY} 4116-6$ | $1.5 \mathrm{~mm}^{2}$ | 12 m |
| 16 A | $5 \mathrm{SY} 4116-6$ | $2.5 \mathrm{~mm}^{2}$ | 20 m |
| 20 A | $5 \mathrm{SY} 4120-6$ | $2.5 \mathrm{~mm}^{2}$ | 20 m |

The setup and installation above can also be used for the semiconductor relays with a $R^{2} t$ value of at least $6600 A^{2} s$.

Technical specifications

Order No.		3RF23 ..-.A...	3RF23 ..-.B...	3RF23 ..-.C...	3RF23 ..-.D...
General data					
Ambient temperature during operation, derating at $40^{\circ} \mathrm{C}$ when stored	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -55 \ldots+80 \end{aligned}$			
Site altitude	m	0 ... 1000; derating from 1000			
Shock resistance acc. to IEC 60068-2-27	g/ms	15/11			
Vibration resistance acc. to IEC 60068-2-6	g	2			
Degree of protection		IP20			
Electromagnetic compatibility (EMC)					
Emitted interference acc. to IEC 60947-4-3 - Conducted interference voltage - Emitted high-frequency interference voltage		Class A for industrial applications		Class A for industrial applications; Class B for residential/business/ commercial areas up to 16 A, AC51 Low Noise	Class A for industrial applications
Noise immunity - Electrostatic discharge acc. to IEC 61000-4-2 (corresponds to degree of severity 3) - Induced RF fields acc. to IEC 61000-4-6 - Burst acc. to IEC 61000-4-4 - Surge acc. to IEC 61000-4-5	kV MHz kV kV	Contact discha 0.15 ... 80; 140 $2 / 5.0 \mathrm{kHz}$; beh Conductor - gro	4; air discharg $B \mu \mathrm{~V}$; behavior cr or criterion 1 nd 2; conductor	8; behavior criterio rion 1 conductor 1; behav	$\text { n } 2$ ior criterion 2

SIRIUS SC Semiconductor Switching Devices
 Semiconductor Contactors

SIRIUS SC semiconductor contactors

Order No.		3RF23 ..-1....	3RF23 ..-2....	3RF23 ..-3....
General data				
Connection technique		Screw connection	Spring-loaded connection	Ring cable connection
Main contact connection Conductor cross-section Solid Finely stranded with end sleeve Finely stranded without end sleeves Solid or stranded AWG conductors Insulation stripping length Terminal screw - Tightening torque - Tightening torque Cable lug - DIN - JIS	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{AWG} \\ & \mathrm{~mm} \\ & \mathrm{Nm} \\ & \mathrm{lb} . \mathrm{in} \end{aligned}$	$\begin{aligned} & 2 \times(1.5 \ldots 2.5), 2 \times(2.5 \ldots 6) \\ & 2 \times(1.5 \ldots 2.5), 2 \times(2.5 \ldots 6), 1 \times 10 \\ & 2 \times(14 \ldots 10) \\ & 10 \\ & M 4 \\ & 2 \ldots 2.5 \\ & 18 \ldots 22 \end{aligned}$	$\begin{aligned} & 2 \times\left(\begin{array}{lll} 0.5 \ldots & \ldots .5) \\ 2 \times(0.5 \ldots & 1.5) \\ 2 \times(0.5 \ldots & 2.5) \\ 2 \times(18 \ldots & 14) \\ 10 \\ - \end{array} \quad l\right. \end{aligned}$	
Auxiliary/control contact connections Conductor cross-section Insulation stripping length Terminal screw - Tightening torque	mm^{2} AWG mm Nm lb.in	$\begin{aligned} & 1 \times(0.5 \ldots 2.5) ; 2 \times(0.5 \ldots 1.0) \\ & 20 \ldots 12 \\ & 7 \\ & M 3 \\ & 0.5 \ldots 0.6 \\ & 4.5 \ldots 5.3 \end{aligned}$	$\begin{aligned} & 0.5 \ldots .1 .5 \\ & 20 \ldots .12 \\ & 10 \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 1 \times(0.5 \ldots 2.5) ; 2 \times(0.5 \ldots 1.0) \\ & 20 \ldots 12 \\ & 7 \\ & \text { M } 3 \\ & 0.5 \ldots 0.6 \\ & 4.5 \ldots 5.3 \end{aligned}$

Type		3RF23 ..-.... 2	3RF23 ..-... 4	3RF23 ..-... 6
Main circuit				
Rated operational voltage U_{e} - Tolerance - Rated frequency	$\begin{aligned} & \mathrm{V} \\ & \% \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 24 \ldots 230 \\ & -15 /+10 \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$230 . . .460$	400 ... 600
Rated insulation voltage U_{i}	V	600		
Blocking voltage	V	800	1200	1600
Rate of voltage rise	V/ $/ \mathrm{s}$	1000		

Order No.	Type current AC-51 ${ }^{11}$			Power loss at $I_{\text {max }}$	Minimum load current	Leakage current	Rated impulse withstand capacity $I_{\text {tsm }}$	$P_{\text {t }}$ value
	$I_{\text {max }}$ at $40^{\circ} \mathrm{C}$	acc. to IEC 60947-4-3 at $40^{\circ} \mathrm{C}$	UL/CSA at $50^{\circ} \mathrm{C}$					
	A	A	A	W	A	mA	A	$A^{2} \mathrm{~s}$
Main circuit								
$\begin{aligned} & \text { 3RF23 1.-.A.. } 2 \\ & \text { 3RF23 1.-.A.. } \\ & \text { 3RF23 1.-.A.. } 6 \end{aligned}$	10.5	7.5	9.6	11	0.5	10	$\begin{aligned} & 200 \\ & 200 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 800 \\ & \hline \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 2.-.A.. } 2 \\ & \text { 3RF23 2...C.. } 2 \\ & \text { 3RF23 2.-.D. } 2 \end{aligned}$	20	13.2	17.6	20	0.5	$\begin{aligned} & 10 \\ & 25 \\ & 10 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 1150 \end{aligned}$	$\begin{aligned} & 1800 \\ & 1800 \\ & 6600 \end{aligned}$
3RF23 2.-.A.. 4 3RF23 2.-.C.. 4 3RF23 2.-.D.. 4						$\begin{aligned} & 10 \\ & 25 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 1150 \\ & 600 \end{aligned}$	$\begin{aligned} & 1800 \\ & 1800 \\ & 6600 \end{aligned}$
3RF23 2.-. A.. 6							600	1800
$\begin{aligned} & \hline \text { 3RF23 3.-.A.. } 2 \\ & \text { 3RF23 3.-.A.. } 4 \\ & \text { 3RF23 3.-.A.. } 6 \end{aligned}$	30	22	27	33	0.5	10	600	1800
$\begin{aligned} & \text { 3RF23 4.-.A.. } 2 \\ & \text { 3RF23 4.-.A. } 4 \\ & \text { 3RF23 4.-.A.. } \end{aligned}$	40	33	36	44	0.5	10	$\begin{aligned} & 1200 \\ & 1200 \\ & 1150 \\ & \hline \end{aligned}$	$\begin{aligned} & 7200 \\ & 7200 \\ & 6600 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 3RF23 5.-.A.. } 2 \\ & \text { 3RF23 5.-.A.. } 4 \\ & \text { 3RF23 5.-.A.. } 6 \end{aligned}$	50	36	45	54	0.5	10	1150	6600
$\begin{aligned} & \hline \text { 3RF23 7.-.A.. } 2 \\ & \text { 3RF23 7.-.A.. } 4 \\ & \text { 3RF23 7.-.A.. } 6 \end{aligned}$	70	70	62	83	0.5	10	1150	6600
$\begin{aligned} & \hline \text { 3RF23 9.-.A.. } 2 \\ & \text { 3RF23 9.-.A.. } 4 \\ & \text { 3RF23 9.-.A.. } 6 \end{aligned}$	88	88	80	117	0.5	10	1150	6600

1) The type current provides information about the performance of the semi-
conductor contactor. The actual permitted operational current I_{e} can be
smaller depending on the connection method and start-up conditions.
Derating acc. to curves from page $3 / 30$!

SIRIUS SC Semiconductor Switching Devices
 Semiconductor Contactors

SIRIUS SC semiconductor contactors

Order No.	Type current AC-51 ${ }^{1)}$					Power loss at $I_{\text {max }}$	Minimum load current	Leakage current	Rated impulse withstand capacity Itsm	Ptvalue
	$I_{\text {max }}$ at $40^{\circ} \mathrm{C}$	```acc. to IEC 60947- 4-3 at 40 }\mp@subsup{}{}{\circ}\textrm{C```	UL/CSA at $50^{\circ} \mathrm{C}$	AC-15	Parameters					
	A	A	A	A		W	A	mA	A	$A^{2} s$
Main circuit										
$\begin{aligned} & \text { 3RF23 1.-.B.. } 2 \\ & \text { 3RF23 1.-B... } \\ & \text { 3RF23 1.-.B.. } \end{aligned}$	10.5	7.5	9.6	6	$\begin{aligned} & 1200 \text { 1/h } \\ & 50 \% \text { ED } \end{aligned}$	11	0.5	10	$\begin{array}{r} 200 \\ 200 \\ 400 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 200 \\ & 800 \\ & \hline \end{aligned}$
3RF23 2.-.B.. 2 3RF23 2.-.B.. 4 3RF23 2.-.B.. 6	20	13.2	17.6	12	$\begin{aligned} & 1200 \text { 1/h } \\ & 50 \% \text { ED } \end{aligned}$	20	0.5	10	600	1800
$\begin{array}{ll} \hline \text { 3RF23 3.-B.. } 2 \\ \text { 3RF23 } \\ \text { 3RF23 3.-.... } 4 \\ \text { 3R... } 6 \end{array}$	30	22	27	15	$\begin{aligned} & 1200 \text { 1/h } \\ & 50 \% \text { ED } \end{aligned}$	33	0.5	10	600	1800
$\begin{aligned} & \hline \text { 3RF23 4.-.B.. } 2 \\ & \text { 3RF23 4.-.B..4 } \\ & \text { 3RF23 4.-.B... } 6 \end{aligned}$	40	33	36	20	$\begin{aligned} & 12001 / \mathrm{h} \\ & 50 \% \text { ED } \end{aligned}$	44	0.5	10	$\begin{aligned} & 1200 \\ & 1200 \\ & 1150 \end{aligned}$	$\begin{aligned} & 7200 \\ & 7200 \\ & 6600 \end{aligned}$
$\begin{aligned} & \text { 3RF23 5.-.B... } \\ & \text { 3RF23 5.-.B..4 } \\ & \text { RRF23 5.-.B.. } \end{aligned}$	50	36	45	25	$\begin{aligned} & 1200 \text { 1/h } \\ & 50 \% \text { ED } \end{aligned}$	54	0.5	10	1150	6600
3RF23 7.-.B.. 2 3RF23 7.-.B.. 4 3RF23 7.-.B.. 6	70	70	62	27.5	$\begin{aligned} & 1200 \text { 1/h } \\ & 50 \% \text { ED } \end{aligned}$	83	0.5	10	1150	6600
$\begin{aligned} & \hline \text { 3RF23 9.-.B.. } 2 \\ & \text { 3RF23 9.-.B.. } 4 \\ & \text { 3RF23 9.-.B.. } 6 \end{aligned}$	88	88	80	30	$\begin{aligned} & 1200 \text { 1/h } \\ & 50 \% \text { ED } \end{aligned}$	117	0.5	10	1150	6600

1) The type current provides information about the performance of the semi-
conductor contactor. The actual permitted operational current I_{e} can be
smaller depending on the connection method and start-up conditions.
Derating acc. to curves from page $3 / 30$!

Type		3RF23 ..-...0.	3RF23 ..-...2.
Control circuit			
Method of operation		DC operation	AC operation
Rated control supply voltage $\boldsymbol{U}_{\text {s }}$	V	24 to EN 61131-2	$110 \ldots 230$
Max. rated control voltage	V	30	253
Rated control current at $\boldsymbol{U}_{\mathbf{s}}$	mA	15	6
Rated frequency of the control supply voltage	Hz		50/60
Response voltage for tripping current	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 15 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 2 \\ & \hline \end{aligned}$
Drop-out voltage	V	5	40
Operating times closing time opening time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	1 additional max. one half-wave 1 additional max. one half-wave	40 additional max. one half-wave 40 additional max. one half-wave

SIRIUS SC Semiconductor Switching Devices
 Semiconductor Contactors

SIRIUS SC semiconductor contactors

Order No.	Accessories			
	Converters	Load monitors Basic	Extended	Power controllers
Type current $=10.5 \mathrm{~A}$				
3RF23 1.-1 A. 02 3RF23 1.-1A. 04 3RF23 1.-1A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 20-0GA13 3RF29 20-0GA16 3RF29 20-0GA16	
3RF23 1.-1 A. 22 3RF23 1.-1A. 24 3RF23 1.-1A. 26	-	-	3RF29 20-0GA33 3RF29 20-0GA36 3RF29 20-0GA36	
3RF23 1.-1B. 02 3RF23 1.-1B. 04 3RF23 1.-1B. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-OFA08	3RF29 20-0GA13 3RF29 20-0GA16 3RF29 20-0GA16	3RF29 20-0HA13 3RF29 20-0HA16 3RF29 20-OHA16
3RF23 1.-1B. 22 3RF23 1.-1B. 24 3RF23 1.-1B. 26	-	-	3RF29 20-0GA33 3RF29 20-0GA36 3RF29 20-0GA36	$\begin{aligned} & \text { 3RF29 20-OHA33 } \\ & \text { 3RF29 20-0HA36 } \\ & \text { 3RF29 20-OHA36 } \end{aligned}$
3RF23 1.-2A. 02 3RF23 1.-2A. 04 3RF23 1.-2A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	-		
3RF23 1.-2A. 22 3RF23 1.-2A. 24 3RF23 1.-2A. 26	-	-		
3RF23 1.-3A. 02 3RF23 1.-3A. 04 3RF23 1.-3A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	-	3RF29 20-0GA13 3RF29 20-0GA16 3RF29 20-0GA16	
3RF23 1.-3A. 22 3RF23 1.-3A. 24 3RF23 1.-3A. 26	-	--	$\begin{aligned} & \text { 3RF29 20-0GA33 } \\ & \text { 3RF29 20-0GA36 } \\ & \text { 3RF29 20-0GA36 } \end{aligned}$	
Type current $=20 \mathrm{~A}$				
$\begin{aligned} & \text { 3RF23 2.-1A. } 02 \\ & \text { 3RF23 2.-1A. } 04 \\ & \text { 3RF23 2.-1A. } 06 \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-OFA08	3RF29 20-0GA13 3RF29 20-0GA16 3RF29 20-0GA16	
$\begin{aligned} & \hline \text { 3RF23 2.-1A. } 22 \\ & \text { 3RF23 2.-1A. } 24 \\ & \text { 3RF23 2.-1A. } 26 \\ & \hline \end{aligned}$	-	-	3RF29 20-0GA33 3RF29 20-0GA36 3RF29 20-0GA36	
3RF23 2.-1B. 02 3RF23 2.-1B. 04 3RF23 2.-1B. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 20-0GA13 3RF29 20-0GA16 3RF29 20-0GA16	3RF29 20-OHA13 3RF29 20-0HA16 3RF29 20-OHA16
3RF23 2.-1B. 22 3RF23 2.-1B. 24 3RF23 2.-1B. 26	-	-	3RF29 20-0GA33 3RF29 20-0GA36 3RF29 20-0GA36	3RF29 20-OHA33 3RF29 20-0HA36 3RF29 20-0HA36
$\begin{aligned} & \hline \text { 3RF23 2.-1C. } 02 \\ & \text { 3RF23 2.-1C. } 04 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OFA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	3RF29 20-0GA13 3RF29 20-0GA16	
$\begin{aligned} & \hline \text { 3RF23 2.-1C. } 22 \\ & \text { 3RF23 2.-1C. } 24 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & \text { 3RF29 20-0GA33 } \\ & \text { 3RF29 20-0GA36 } \end{aligned}$	
$\begin{aligned} & \hline \text { 3RF23 2.-1D. } 02 \\ & \text { 3RF23 2.-1D. } 04 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OFA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	3RF29 20-0GA13 3RF29 20-0GA16	
$\begin{aligned} & \hline \text { 3RF23 2.-1D. } 22 \\ & \text { 3RF23 2.-1D. } 24 \end{aligned}$	-	-	$\begin{aligned} & \text { 3RF29 20-0GA33 } \\ & \text { 3RF29 20-0GA36 } \end{aligned}$	-
3RF23 2.-2A. 02 3RF23 2.-2A. 04 3RF23 2.-2A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	-		
3RF23 2.-2A. 22 3RF23 2.-2A. 24 3RF23 2.-2A. 26	-	-	-	-
$\begin{aligned} & \hline \text { 3RF23 2.-2C.02 } \\ & \text { 3RF23 2.-2C. } 04 \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	-	-	-
$\begin{aligned} & \text { 3RF23 2.-2C. } 22 \\ & \text { 3RF23 2.-2C. } 24 \\ & \hline \end{aligned}$	-	-	-	-
$\begin{aligned} & \hline \text { 3RF23 2.-2D. } 22 \\ & \text { 3RF23 2.-2D. } 24 \end{aligned}$	-	-		-
$\begin{aligned} & \hline \text { 3RF23 2.-3A. } 02 \\ & \text { 3RF23 2.-3A. } 04 \\ & \text { 3RF23 2.-3A. } 06 \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	--	3RF29 20-0GA13 3RF29 20-0GA16 3RF29 20-OGA16	
3RF23 2.-3A. 22 3RF23 2.-3A. 24 3RF23 2.-3A. 26	-	-	3RF29 20-0GA33 3RF29 20-0GA36 3RF29 20-0GA36	
$\begin{aligned} & \hline \text { 3RF23 2.-3D.02 } \\ & \text { 3RF23 2.-3D.04 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	-	3RF29 20-0GA13 3RF29 20-0GA16	
3RF23 2.-3D. 22 3RF23 2.-3D. 24	-	-	3RF29 20-0GA33 3RF29 20-0GA36	

SIRIUS SC Semiconductor Switching Devices
 Semiconductor Contactors

SIRIUS SC semiconductor contactors

	Order No.	Load monitors	
	Accessories		
	Converters		

SIRIUS SC Semiconductor Switching Devices
 Semiconductor Contactors

SIRIUS SC semiconductor contactors

Fused design with semiconductor protection

(similar to type of coordination "2")1)

The semiconductor protection for the SIRIUS SC controlgear can be used with different protective devices. This allows protection by means of LV HRC fuses of operational class gL/gG or miniature circuit-breakers. Siemens recommends the use of special SITOR semiconductor fuses. The table below lists the maximum permissible fuses for each SIRIUS SC control gear.

If a fuse is used with a higher rated current than specified, semiconductor protection is no longer guaranteed. However, smaller fuses with a lower rated current for the load can be used without problems
For protective devices with operational class gL/gG and for SITOR full range fuses 3NE1, the minimum cross-sections for the conductor to be connected must be taken into account.

Order No.	All-range fuse LV HRC design gR/SITOR 3NE1	Semiconductor protection fuse Cylindrical design			Cable and line protection fuse				
		$10 \times 38 \mathrm{~mm}$ aR/SITOR 3NC1 0	$14 \times 51 \mathrm{~mm}$ aR/SITOR 3NC1 4	$22 \times 58 \mathrm{~mm}$ aR/SITOR 3NC2 2	design gL/gG 3NA	$\begin{aligned} & 10 \times 38 \mathrm{~mm} \\ & \mathrm{gL} / \mathrm{gG} 3 \mathrm{NW} \end{aligned}$	$14 \times 51 \mathrm{~mm}$ gL/gG 3NW	$\begin{aligned} & 22 \times 58 \mathrm{~mm} \\ & \mathrm{gL} / \mathrm{gG} 3 \mathrm{NW} \end{aligned}$	
$\begin{aligned} & \text { 3RF23 1.-.... } 2 \\ & \text { 3RF23 1.... } 4 \\ & \text { 3RF23 1..... } 6 \end{aligned}$	$\begin{aligned} & \text { 3NE1 813-0 } \\ & \text { 3NE1 813-0 } \\ & \text { 3NE1 813-0 } \end{aligned}$	3NC1 010 3NC1 010 3NC1 010	$\begin{aligned} & \text { 3NC1 } 410 \\ & \text { 3NC1 } 410 \\ & \text { 3NC1 } 410 \end{aligned}$	$\begin{aligned} & \text { 3NC2 } 220 \\ & \text { 3NC2 } 220 \\ & \text { 3NC2 } 220 \end{aligned}$	$\begin{aligned} & \text { 3NA2 } 803 \\ & \text { 3NA2 } 801 \\ & \text { 3NA2 803-6 } \end{aligned}$	$\begin{aligned} & \text { 3NW6 001-1 } \\ & \text { 3NW6 001-1 } \end{aligned}$	3NW6 101-1 3NW6 101-1		$\begin{aligned} & \text { 5SB1 } 41 \\ & \text { 5SB1 } 41 \end{aligned}$
$\begin{aligned} & \text { 3RF23 2.-.... } 2 \\ & \text { 3RF23 2.-... } 4 \\ & \text { 3RF23 2.-... } 6 \end{aligned}$	$\begin{aligned} & \text { 3NE1 814-0 } \\ & \text { 3NE1 814-0 } \\ & \text { 3NE1 } 814-0 \end{aligned}$	3NC1 020 3NC1 020 3NC1 020	$\begin{aligned} & \text { 3NC1 } 420 \\ & \text { 3NC1 } 420 \\ & \text { 3NC1 } 420 \end{aligned}$	$\begin{aligned} & \text { 3NC2 } 220 \\ & \text { 3NC2 } 220 \\ & \text { 3NC2 } 220 \end{aligned}$	$\begin{aligned} & \text { 3NA2 } 807 \\ & \text { 3NA2 } 807 \\ & \text { 3NA2 807-6 } \end{aligned}$	3NW6 007-1 3NW6 005-1	3NW6 107-1 3NW6 105-1	3NW6 207-1 3NW6 205-1	$\begin{aligned} & \text { 5SB1 } 71 \\ & \text { 5SB1 } 71 \end{aligned}$
$\begin{aligned} & \text { 3RF23 } 3 .-\ldots .2 \\ & \text { 3RF23 } 3-\ldots .4 \\ & \text { 3RF23 } 3 .-. . .6 \end{aligned}$	3NE1 803-0 3NE1 803-0 3NE1 803-0	3NC1 032 3NC1 032 3NC1 032	$\begin{aligned} & \text { 3NC1 } 432 \\ & \text { 3NC1 } 432 \\ & \text { 3NC1 } 432 \end{aligned}$	$\begin{aligned} & \text { 3NC2 } 232 \\ & \text { 3NC2 } 232 \\ & \text { 3NC2 } 232 \end{aligned}$	$\begin{aligned} & \text { 3NA2 } 810 \\ & \text { 3NA2 } 807 \\ & \text { 3NA2 } 807-6 \end{aligned}$		3NW6 107-1 3NW6 105-1	3NW6 207-1 3NW6 205-1	$\begin{aligned} & \text { 5SB3 } 11 \\ & \text { 5SB3 } 11 \end{aligned}$
$\begin{aligned} & \text { 3RF23 } 4 .-\ldots .2 \\ & \text { 3RF23 } 4 .-\ldots .4 \\ & \text { 3RF23 } 4 .-\ldots .6 \end{aligned}$	3NE1 802-0 3NE1 802-0 3NE1 802-0	-	$\begin{aligned} & \text { 3NC1 } 440 \\ & \text { 3NC1 } 440 \\ & \text { 3NC1 } 440 \end{aligned}$	$\begin{aligned} & \text { 3NC2 } 240 \\ & \text { 3NC2 } 240 \\ & \text { 3NC2 } 240 \end{aligned}$	3NA2 817 3NA2 812 3NA2 812-6		3NW6 117-1 3NW6 112-1	3NW6 217-1 3NW6 212-1	$\begin{aligned} & \text { 5SB3 } 21 \\ & \text { 5SB3 } 21 \end{aligned}$
$\begin{aligned} & \text { 3RF23 5.-.... } \\ & \text { 3RF23 } 54 \\ & \text { 3RF23 } 5 .-\ldots .6 \end{aligned}$	$\begin{aligned} & \text { 3NE1 817-0 } \\ & \text { 3NE1 817-0 } \\ & \text { 3NE1 } 817-0 \end{aligned}$	-	$\begin{aligned} & \text { 3NC1 450 } \\ & \text { 3NC1 450 } \\ & \text { 3NC1 450 } \end{aligned}$	$\begin{aligned} & \text { 3NC2 } 250 \\ & \text { 3NC2 } 250 \\ & \text { 3NC2 } 250 \end{aligned}$	3NA2 817 3NA2 812 3NA2 812-6	-	3NW6 117-1	3NW6 217-1 3NW6 210-1	$\begin{aligned} & \text { 5SB3 } 21 \\ & \text { 5SB3 } 21 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 7.-.... } 2 \\ & \text { 3RF23 } 7 .-\ldots .4 \\ & \text { 3RF23 } 7 .-\ldots .6 \end{aligned}$	3NE1 820-0 3NE1 020-2 3NE1 020-2	-	-	$\begin{aligned} & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \end{aligned}$	3NA2 817 3NA2 812 3NA2 812-6	-	-	3NW6 217-1 3NW6 210-1	$\begin{aligned} & \text { 5SB3 } 31 \\ & \text { 5SB3 } 21 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 9.-.... } 2 \\ & \text { 3RF23 9.-.. } 4 \\ & \text { 3RF23 9.-... } 6 \end{aligned}$	3NE1 021-2 3NE1 021-2 3NE1 020-2	-	-	$\begin{aligned} & \text { 3NC2 } 200 \\ & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \end{aligned}$	3NA2 817 3NA2 812 3NA2 812-6	-	-	3NW6 217-1 3NW6 210-1	$\begin{aligned} & \text { 5SB3 } 31 \\ & \text { 5SB3 } 21 \end{aligned}$

1) Type of coordination "2" acc. to EN 60947-4-1:

In the event of a short-circuit, the controlgear in the load feeder must not endanger persons or the installation. They must be suitable for further operation. For fused configurations, the protective device must be replaced.

SIRIUS SC semiconductor contactors

Selection and ordering data

3RF23 40－1AA02

3RF23 50－3AA02

3RF23 70－3AA02

3RF23 90－3AA02

Type current $I_{\text {max }}$	Maxim able p $I_{\text {max }}$ and 115 V	mum ac power f and U_{e} 230 V	hiev－ or $400 \mathrm{~V}$	DT	Screw connection	PS＊	Weight per PU approx．	DT	Spring－loaded connection	PS＊	Weight per PU approx．	DT	Ring cable connection	PS＊	Weight per PU approx
A	kW	kW	kW		Order No．		kg		Order No．		kg		Order No．		kg
Zero－point switching，rated operational voltage $U_{\mathrm{e}}=24 \mathrm{~V}$ to 230 V															
$\begin{aligned} & 10.5 \\ & 20 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.6 \end{aligned}$	－	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { 3RF23 10-1AA } \square 2 \\ & \text { 3RF23 20-1AA } \square 2 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.136 \\ & 0.204 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { 3RF23 10-2AA } \square 2 \\ & \text { 3RF23 20-2AA } \square 2 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.136 \\ & 0.204 \end{aligned}$	$\begin{aligned} & B \\ & B \end{aligned}$	3RF23 10－3AA■2 3RF23 20－3AAD2	1 unit 1 unit	$\begin{aligned} & 0.136 \\ & 0.204 \end{aligned}$
30	3.5	6.9	－	A	3RF23 30－1AAロ2	1 unit	0.354		－			B	3RF23 30－3AAD2	1 unit	0.354
40	4.6	9.2	－	A	3RF23 40－1AAD2	1 unit	0.496		－			B	3RF23 40－3AAD2	1 unit	0.496
50	6	12	－	A	3RF23 50－1AAD2	1 unit	0.496		－			B	3RF23 50－3AA $\square 2$	1 unit	0.496
70	8	16	－		－				－			B	3RF23 70－3AA $\square 2$	1 unit	0.944
88	10	20	－		－				－			B	3RF23 90－3AAD2	1 unit	2.600

10.5	－	2.4	4.2	A	3RF23 10－1 AA $\square 4$	1 unit	0.136	B	3RF23 10－2AAD4	1 unit	0.136	B	3RF23 10－3AAD4	1 unit	0.136
20	－	4.6	8	A	3RF23 20－1AA $\square 4$	1 unit	0.204	B	3RF23 20－2AA口4	1 unit	0.204	B	3RF23 20－3AAD4	1 unit	0.204
30	－	6.9	12	A	3RF23 30－1AAD4	1 unit	0.354		－			B	3RF23 30－3AAD4	1 unit	0.354
40	－	9.2	16	A	3RF23 40－1AAD4	1 unit	0.496		－			B	3RF23 40－3AAD4	1 unit	0.496
50	－	12	20	A	3RF23 50－1AA $\square 4$	1 unit	0.496		－			B	3RF23 50－3AAD4	1 unit	0.496
70	－	16	28		－				－			B	3RF23 70－3AAD4	1 unit	0.944
88	－	20	35		－				－			B	3RF23 90－3AAD4	1 unit	2.600

$\begin{aligned} & 10.5 \\ & 20 \end{aligned}$	－	－	$\begin{aligned} & 4.2 \\ & 8 \end{aligned}$	$\begin{aligned} & B \\ & B \end{aligned}$	3RF23 10－1AAD6 3RF23 20－1AAロ6	1 unit 1 unit	$\begin{aligned} & 0.136 \\ & 0.204 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	3RF23 10－2AA■6 3RF23 20－2AAD6	1 unit 1 unit	$\begin{aligned} & 0.136 \\ & 0.204 \end{aligned}$	B	3RF23 10－3AAD6 3RF23 20－3AA $\square 6$	1 unit 1 unit	$\begin{aligned} & 0.136 \\ & 0.204 \end{aligned}$
30	－	－	12	B	3RF23 30－1AAD6	1 unit	0.354		－			B	3RF23 30－3AAD6	1 unit	0.354
40	－	－	16	B	3RF23 40－1AAD6	1 unit	0.496		－			B	3RF23 40－3AAD6	1 unit	0.496
50	－	－	20	B	3RF23 50－1AA口6	1 unit	0.496		－			B	3RF23 50－3AAD6	1 unit	0.496
70	－	－	28		－							B	3RF23 70－3AAロ6	1 unit	0.944
88	－	－	35		－				－			B	3RF23 90－3AA■6	1 unit	2.600

Order No．extension for

rated control supply voltage $\boldsymbol{U}_{\mathrm{s}}$
DC 24 V acc．to EN 61131－2
AC 110 V ．．． 230 V

Other rated control supply voltages on request．
1）The type current provides information about the performance of the semi－ conductor contactor．The actual permitted operational current l_{e} can be smaller depending on the connection method and start－up conditions． Derating acc．to curves from page $3 / 30$ ！

SIRIUS SC Semiconductor Switching Devices
 Semiconductor Contactors

SIRIUS SC semiconductor contactors

Type current 1) $I_{\text {max }}$.	Maxi able $I_{\text {max }}$ 115	um ower nd U_{e} 230	hiev- or $400 \mathrm{~V}$	DT	Screw connection	PS*	Weight per PU approx.	DT	Spring-loaded connection	PS*	Weight per PU approx.	DT	Ring cable connection	PS*	Weight per PU approx
A	kW	kW	kW		Order No.		kg		Order No.		kg		Order No.		kg
Instantaneous switching, rated operational voltage $U_{\mathrm{e}}=24 \mathrm{~V}$ to 230 V															
$\begin{aligned} & 10.5 \\ & 20 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.3 \end{aligned}$		-	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { 3RF23 10-1BA } \square 2 \\ & \text { 3RF23 20-1BA } \square 2 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.136 \\ & 0.204 \end{aligned}$								
$\begin{aligned} & 30 \\ & 40 \\ & 50 \end{aligned}$			-	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	3RF23 30-1BA $\square 2$ 3RF23 40-1BA $\square 2$ 3RF23 40-1BA $\square 2$ 3RF23 50-1BA $\square 2$	1 unit 1 unit 1 unit	$\begin{aligned} & 0.354 \\ & 0.496 \end{aligned}$ 0.496								
$\begin{aligned} & 70 \\ & 88 \end{aligned}$			-	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { 3RF23 70-1BA } \square 2 \\ & \text { 3RF23 90-1BA } \square 2 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.944 \\ & 2.600 \end{aligned}$					$\begin{aligned} & B \\ & B \end{aligned}$	$\begin{aligned} & \text { 3RF23 70-3BA } \square 2 \\ & \text { 3RF23 90-3BA } \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.944 \\ & 2.600 \end{aligned}$
Instantaneous switching, rated operational voltage $U_{\mathrm{e}}=230 \mathrm{~V}$ to 460 V															
$\begin{aligned} & 10.5 \\ & 20 \end{aligned}$	-		4.2 8	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	3RF23 10-1BA $\square 4$ 3RF23 20-1BA $\square 4$	1 unit 1 unit	$\begin{aligned} & 0.136 \\ & 0.204 \end{aligned}$								
$\begin{aligned} & 30 \\ & 40 \\ & 50 \end{aligned}$			$\begin{aligned} & 12 \\ & 16 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	3RF23 30-1BAD4 3RF23 40-1BAD4 3RF23 50-1BAD4	1 unit 1 unit 1 unit	$\begin{aligned} & 0.354 \\ & 0.496 \\ & 0.496 \end{aligned}$								
$\begin{aligned} & 70 \\ & 88 \end{aligned}$			$\begin{aligned} & 28 \\ & 35 \end{aligned}$	$\begin{aligned} & \text { B } \\ & B \end{aligned}$	$\begin{aligned} & \text { 3RF23 70-1BA } \square 4 \\ & \text { 3RF23 90-1BA } \square 4 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.944 \\ & 2.600 \end{aligned}$					$\begin{aligned} & B \\ & B \end{aligned}$	3RF23 70-3BA $\square 4$ 3RF23 90-3BA $\square 4$	1 unit 1 unit	$\begin{aligned} & 0.944 \\ & 2.600 \end{aligned}$
Instantaneous switching, rated operational voltage $U_{\mathrm{e}}=400 \mathrm{~V}$ to 600 V															
$\begin{aligned} & 10.5 \\ & 20 \end{aligned}$				$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { 3RF23 10-1BA } \square 6 \\ & \text { 3RF23 20-1BA } \square 6 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.136 \\ & 0.204 \end{aligned}$								
$\begin{aligned} & 30 \\ & 40 \\ & 50 \end{aligned}$	- - -	-	$\begin{aligned} & 12 \\ & 16 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	3RF23 30-1BA $\square 6$ 3RF23 40-1BAD6 3RF23 50-1BA $\square 6$	1 unit 1 unit 1 unit	$\begin{aligned} & 0.354 \\ & 0.496 \\ & 0.496 \end{aligned}$								
$\begin{aligned} & 70 \\ & 88 \end{aligned}$		-	$\begin{aligned} & 28 \\ & 35 \end{aligned}$	$\begin{aligned} & B \\ & B \end{aligned}$	$\begin{aligned} & \text { 3RF23 70-1BA } \square 6 \\ & \text { 3RF23 90-1BA } \square \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.944 \\ & 2.600 \end{aligned}$					$\begin{aligned} & B \\ & B \end{aligned}$	$\begin{aligned} & \text { 3RF23 70-3BA } \square 6 \\ & \text { 3RF23 90-3BA } \square 6 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.944 \\ & 2.600 \end{aligned}$
Low noise, rated operational voltage $U_{\mathrm{e}}=24 \mathrm{~V}$ to 230 V															
20	2.3	4.6	-	B	3RF23 20-1CAD2	1 unit	0.204	B	3RF23 20-2CAロ2	1 unit	0.204		-		
Low noise, rated operational voltage $U_{\mathrm{e}}=230 \mathrm{~V}$ to 460 V															
20	-	4.6	8	B	3RF23 20-1CAD4	1 unit	0.204	B	3RF23 20-2CA口4	1 unit	0.204		-		
Short-circuit resistant with B-automatic device, rated operational voltage $\boldsymbol{U}_{\mathrm{e}}=\mathbf{2 4 ~ V}$ to 230 V															
20	2.3	4.6	-	B	3RF23 20-1DA■2	1 unit	0.204	B	3RF23 20-2DA22	1 unit	0.204	B	3RF23 20-3DA■2	1 unit	0.204
Short-circuit resistant with B-automatic device, rated operational voltage $U_{e}=230 \mathrm{~V}$ to 460 V															
20	-	4.6	8	B	3RF23 20-1DA■4	1 unit	0.204	B	3RF23 20-2DA24	1 unit	0.204	B	3RF23 20-3DA■4	1 unit	0.204
Order No. extension for rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$															
DC 24 V acc. to EN 61131-2 AC 110 V ... 230 V					$\begin{aligned} & 0 \\ & 2 \end{aligned}$				$\begin{aligned} & 0 \\ & 2 \end{aligned}$				0		

Other rated control supply voltages on request.

1) The type current provides information about the performance of the semi-
conductor contactor. The actual permitted operational current I_{e} can be
smaller depending on the connection method and start-up conditions.
Derating acc. to curves from page $3 / 30$!

	Version	DT	Order No.	PS*	Weight per PU approx. kg
	Accessories				
	Screwdriver for spring-loaded connection system	A	8WA2 880	1 unit	0.034
	Terminal cover for 3RF21 semiconductor relays and 3RF23 semiconductor contactors with ring terminal end (after simple adaptation, this terminal cover can also be used for screw connection).	A	3RF29 00-3PA88	$\begin{array}{r} 10 \\ \text { units } \end{array}$	0.010
3RF29 00-3PA88					

SIRIUS SC Semiconductor Switching Devices
 Semiconductor Contactors

SIRIUS SC semiconductor contactors

Further information

Notes on selection

These notes are intended for general orientation and will no doubt be sufficient for most applications. If the installation conditions differ significantly from the examples described here, you can contact our Technical Assistance team for further help.

Telephone: +49 9131743833
Fax: $\quad+499131742899$
e-mail: nst.technical-assistance@siemens.com
For more information on the Internet go to
www.siemens.com/lowvoltage/technical-assistance

Selecting semiconductor contactors

The semiconductor contactors are selected on the basis of details of the power system, the load and the ambient conditions. As the semiconductor contactors are already equipped with an optimally matched heat sink, the selection process is considerably simpler than that for semiconductor relays.
The following procedure is recommended:

- Determine the rated current of the load and the mains voltage
- Select a semiconductor contactor with the same or higher rated current than the load
- Check the correct contactor size with the aid of the rated current diagram, taking account of the design conditions

SIRIUS SC Semiconductor Switching Devices
 Function Modules

General data

Overview

Function modules for SIRIUS SC semiconductor switching devices

A great variety of applications demand an expanded range of functionality. With our function modules, these requirements can be met really easily. The modules are mounted simply by clicking them into place; straight away the necessary connections are made with the semiconductor relay or contactor.

The plug-in connection to control the semiconductor switching devices can simply remain in use.

- Converters
- Load monitors
- Power controllers

Technical specifications

Type		3RF29 ..-.E...	3RF29 ..-.F...	3RF29 ..-.G...	3RF29 ..-.H...
General data					
Ambient temperature during operation, derating at $40^{\circ} \mathrm{C}$ when stored	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -55 \ldots+80 \end{aligned}$			
Site altitude	m	0 ... 1000; derating from 1000			
Shock resistance acc. to IEC 60068-2-27	g / ms	15/11			
Vibration resistance acc. to IEC 60068-2-6	g	2			
Degree of protection		IP20			
Electromagnetic compatibility (EMC) Emitted interference - Conducted interference voltage acc. to IEC 60947-4-3 - Emitted, high-frequency interference voltage acc. to IEC 60947-4-3		Class A for industrial applications ${ }^{1)}$ Class A for industrial applications			
Noise immunity - Electrostatic discharge acc. to IEC 61000-4-2 (corresponds to degree of severity 3) - Induced RF fields acc. to IEC 61000-4-6 - Burst acc. to IEC 61000-4-4 - Surge acc. to IEC 61000-4-5	kV MHz kV	Contact discharge 4; air discharge 8; behavior criterion 2 $0.15 \ldots 80 ; 140 \mathrm{~dB} \mu \mathrm{~V}$; behavior criterion 1 $2 \mathrm{kV} / 5.0 \mathrm{kHz}$; behavior criterion 1 Conductor - ground 2; conductor - conductor 1; behavior criterion 2			
Connection, auxiliary/control contacts, screw connection Conductor cross-section - Insulation stripping length Terminal screw - Tightening torque	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm} \\ & \mathrm{Nm} \end{aligned}$	$\begin{aligned} & 1 \times(0.5 \ldots 2.5) ; 2 \times(0.5 \ldots 1) \text { AWG } 20 \ldots 12 \\ & 7 \\ & \text { M3 } \\ & 0.5 \ldots 0.6 \end{aligned}$			
Converter diameter of hole	mm	-	7	17	

1) Note limitations for power controller function module on page $3 / 28$.

Type		3RF29 ..-.E.. 8	3RF29 ..-.F.. 8	3RF29 ..-.G.. 3	3RF29 ..-.G.. 6	3RF29 ..-.H.. 3	3RF29 ..-.H.. 6
Main circuit							
Rated operational voltage U_{e} - Tolerance - Rated frequency	$\begin{aligned} & \text { V } \\ & \% \\ & \mathrm{~Hz} \end{aligned}$	_-1)		$\begin{aligned} & 110 \ldots 230 \\ & -15 /+10 \\ & 50 / 60 \end{aligned}$	$400 . . .600$	110 ... 230	$400 \ldots 600$
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$	V	-		600			
Voltage detection Measuring range	V	-		93.5 ... 253	340 ... 660	93.5 ... 253	340 ... 660
Mains voltage fluctuation compensation	\%	-		20			

1) Versions do not depend on main circuit.

Type		3RF29 ..-...0.		3RF29 ..-..1.		3RF29 ..-... 3.		
Control circuit								
Method of operation		DC operation		AC/DC operation			AC operation	
Rated control supply voltage $\boldsymbol{U}_{\mathrm{s}}$ Rated operating current	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 24 \\ & 15 \end{aligned}$		$\begin{aligned} & 24 \\ & 15 \end{aligned}$			$\begin{aligned} & 110 \\ & 15 \end{aligned}$	
Max. rated control voltage Rated control current at maximum voltage	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 30 \\ & 15 \end{aligned}$		$\begin{aligned} & 30 \\ & 15 \end{aligned}$			$\begin{aligned} & 121 \\ & 15 \end{aligned}$	
Rated frequency of the control supply voltage	Hz	-		50/60			50/60	
Response voltage for tripping current	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 15 \\ & 2 \\ & \hline \end{aligned}$		$\begin{aligned} & 15 \\ & 2 \end{aligned}$			$\begin{aligned} & 90 \\ & 2 \end{aligned}$	
Drop-out voltage	V	5		5			-	
Type		3RF29 2..F...	3RF29 2.- .G...	3RF29 2..H...	3RF29 5. .G...	3RF29 5. .H...	3RF29 9..G...	3RF29 9..H...
Current detection								
Rated operational current I_{e}	A	20			50		90	
Measuring range	A	4 ... 22			4 ... 55		4 ... 99	
Number of partial loads		6	12	-	12	-	12	-

SIRIUS SC Semiconductor Switching Devices Function Modules

Converters

Overview

Converter for SIRIUS SC semiconductor switching devices
This module is used to convert analog drive signals, such as those output from many temperature controllers, for example, into a pulse-width-modulated digital signal. The connected semiconductor contactors and relays can therefore regulate the output of a load as a percentage.

Area of application

The device is used for conversion from an analog input signal to an on/off ratio. The function module can only be used in conjunction with a 3RF21 semiconductor relay or a 3RF23 semiconductor contactor.

Design

Mounting

Simply snapping onto the 3RF21 semiconductor relays or 3RF23 semiconductor contactors establishes the connections to the semiconductor switching devices. The connector on the semiconductor switching devices from the control circuit can be used on the converter without rewiring.

Functions

The analog value from a temperature controller is present at the $0-10 \mathrm{~V}$ terminals. This controls the on-to-off period, as a function of voltage. The period duration is predefined at one second. Conversion of the analog voltage is linear in the voltage range from 0.1 to 9.9 V . At voltages below 0.1 V the connected switching device is not activated, while at voltages above 9.9 V the connected switching device is always activated.

Technical specifications
Control input for converter und load monitoring

Type		3RF29 00-0EA18	3RF29 ..-0HA.
Control input			
Analog input	V	$0 \ldots 10$	$0 \ldots 10$
Permissible range	V	$-1 \ldots 11$	$-1 \ldots 11$
Input resistance	$\mathrm{k} \Omega$	100	8
Period duration	s	1	1

Selection and ordering data

SIRIUS SC Semiconductor Switching Devices

Overview

Load monitoring for SIRIUS SC semiconductor switching devices

Many faults can be quickly detected by monitoring a load circuit connected to the semiconductor switching device, as made possible with this module. Examples include the failure of load elements (up to 6 in the basic version or up to 12 in the extended version), alloyed power semiconductors, a lack of voltage or a break in a load circuit. A fault is indicated by one or more LEDs and reported to the controller via a PLC-compatible output.
The operating principle is based on permanent monitoring of the current intensity. This figure is continuously compared with the reference value stored once during commissioning by the simple press of a button. In order to detect the failure of one of several loads, the current difference must be $1 / 6$ (in the basic version) or $1 / 12$ (in the extended version) of the reference value. In the event of a fault, a contact (NC) is actuated and one or more LEDs indicate the fault.

Area of application

The device is used for monitoring one or more loads (partial loads). The function module can only be used in conjunction with a 3RF21 semiconductor relay or a 3RF23 semiconductor contactor. The devices with spring-loaded connections in the load circuit are not suitable.

Design

Mounting

Simply snapping onto the 3RF21 semiconductor relays or 3RF23 semiconductor contactors establishes the connections to the semiconductor switching devices. Because of the special design, the straight-through transformer of the load monitoring module covers the lower main power connection. The cable to the load is simply pushed through and secured with the terminal screw.

Functions

The function module is activated when an "ON" signal is applied (IN terminal). The module constantly monitors the current level and compares this with the setpoint value.

Start-up

Pressing the "Teach" button switches the device on; the current through the semiconductor switching device is detected and is stored as the setpoint. During this process the two lower (red ${ }^{15}$) LEDs flash alternately; simultaneous maintained light from the 3 (red ${ }^{11}$) LEDs indicates the conclusion of the teaching process.

The "Teach" button can also be used to switch on the connected semiconductor switching device briefly for test purposes. In this case the "ON" LED is switched on.
Partial load faults, "basic" load monitoring
If a deviation of at least $1 / 6$ of the stored setpoint value is detected, a fault is signaled. The fault is indicated via a "Fault" LED and by activation of the fault signaling output.

	OK	Fault		
LEDs		Partial load failure/ load short-circuit	Thyristor defect	Mains failure/ fuse rupture
ON/OFF	\checkmark	\checkmark	-	\checkmark
Current flowing	\checkmark	\checkmark	\checkmark	-
Group fault	-	\checkmark	\checkmark	\checkmark

\checkmark Function is available
Function not available

Partial load faults, "extended" load monitoring

Depending on the setting of the "response time" potentiometer, a deviation of at least $1 / 12$ of the stored setpoint value after a response time of between 100 ms and 3 s is signaled as a fault. The fault is indicated via a "Load" LED and by activation of the fault signaling output.
The potentiometer can also be used to determine the response behavior of the fault signaling output. When delay values are set in the left-hand half, the fault signal is stored. This can only be reset by switching on and off by means of the control supply voltage.
When settings are made on the right-hand side, the fault output is automatically reset after the deviation has been corrected.

Voltage compensation, "extended" load monitoring

In addition to the current, the load voltage is also detected. This makes it possible to compensate for influences on the current strength resulting from voltage fluctuations.

Thyristor fault

If a current greater than the residual current of the switching device is measured in the deenergized state, the device triggers a thyristor fault after the set time delay. This means that the fault output is activated and the "Fault" ("Thyristor")") LED lights up.

Supply fault

If no current is measured in the energized state, the device triggers a supply fault after the set time delay. This means that the fault output is activated and the "Fault" ("Supply"1) LED lights up.

1) "Extended" load monitoring

Selection and ordering data

Rated operational current $l_{\text {e }}$ A	Rated operational voltage U_{e}	DT	Rated control supply voltage U_{s} AC 110 V	PS*	Weight per PU approx.	DT	Rated control supply voltage U_{s} AC/DC 24 V	PS*	Weight per PU approx.	DT	Rated control supply voitage U_{s} DC 24 V	PS*	Weight per PU approx. kg
	V		Order No.		kg		Order No.		kg		Order No.		
Basic load monitoring													
20	-		-				-			A	3RF29 20-0FA08	1 unit	0.050
Extended load monitoring													
$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 400 \ldots 600 \end{aligned}$	A	3RF29 20-0GA33 3RF29 20-0GA36	1 unit 1 unit	$\begin{aligned} & 0.120 \\ & 0.120 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA13 } \\ & \text { 3RF29 20-OGA16 } \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.120 \\ & 0.120 \end{aligned}$		-		
$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 400 \ldots 600 \end{aligned}$	A	$\begin{aligned} & \text { 3RF29 50-0GA33 } \\ & \text { 3RF29 50-0GA36 } \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.120 \\ & 0.120 \end{aligned}$	A	$\begin{aligned} & \text { 3RF29 50-0GA13 } \\ & \text { 3RF29 50-0GA16 } \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.120 \\ & 0.120 \end{aligned}$		-		
$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 400 \ldots 600 \end{aligned}$	A	$\begin{aligned} & \text { 3RF29 90-0GA33 } \\ & \text { 3RF29 90-0GA36 } \end{aligned}$	1 unit 1 unit	0.120 0.120	A	$\begin{aligned} & \text { 3RF29 90-0GA13 } \\ & \text { 3RF29 90-0GA16 } \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.120 \\ & 0.120 \end{aligned}$		-		

SIRIUS SC Semiconductor Switching Devices Function Modules

Power controllers

Overview

Power controllers for SIRIUS SC semiconductor switching

 devicesThis module provides similar functionality to a power control regulator.
The following functions are integrated:
Power control regulator with proportional-action control for adjusting the power of the connected load. Here, the setpoint is set with a rotary knob on the module as a percentage with reference to the 100% power stored as a setpoint. In this way the power is kept constant even in the event of voltage fluctuations or a change in load resistance.
Inrush current limitation: With the aid of an adjustable voltage ramp, the inrush current is limited by means of phase control.
This is useful above all with loads such as lamps which have an inrush transient current.

Load circuit monitoring for detecting load failure, alloyed power semiconductors, lack of voltage or a break in the load circuit.

Area of application

The power controller adjusts the current in the connected load by means of a semiconductor switching device depending on a setpoint. This compensates for changes in the mains voltage or in the load resistance. The setpoint can be predefined externally as a 0 to 10 V signal or internally by means of a potentiometer. Depending on the setting of the potentiometer (t_{R}), the adjustment is carried out according to the principle of full-wave control or generalized phase control.

Full-wave control

In this operating mode the output is adjusted to the required setpoint by changing the on-to-off period. The period duration is predefined at one second.

Generalized phase control

In this operating mode the output is adjusted to the required setpoint by changing the current flow angle. In order to observe the limit values of the conducted interference voltage for industrial power systems, a choke rated at at least $200 \mu \mathrm{H}$ must be included in the load circuit.

Design

Mounting

Easy snapping onto the 3RF21 semiconductor relays or 3RF23 semiconductor contactors establishes the connections to the semiconductor switching devices. Because of the special design, the straight-through transformer of the power controller module covers the lower main power connection. The cable to the load is simply pushed through and secured with the terminal screw.

Functions

Start-up

Pressing the "Teach" button switches the device on; the current through the semiconductor switching device and the mains voltage are detected and stored. The resultant output is taken as the 100% output for the setpoint selection. During this process the two lower red LEDs flash alternately. Simultaneous maintained light from the three red LEDs indicates the completion of the "Teach" process.
The "Teach" button can also be used to switch on the connected semiconductor switching device briefly for test purposes. In this case the "ON" LED is switched on.

Setpoint selection

The setting on the setpoint potentiometer (P) determines how the setpoint selection is to be made:

External setpoint selection

At 0% the setpoint selection is set via an external $0-10 \mathrm{~V}$ analog signal (terminals IN / 0-10 V). The device is switched on and off via the power supply (terminals A1 / A2).

Internal setpoint selection

Above 0% the setpoint is set using the potentiometer. To allow this, the potential at terminal A1 must additionally be applied at the IN terminal. After removal of the "ON" signal, the switching module is switched off.

Inrush current limitation

The ramp time (t_{R}) for a voltage ramp on switching on is set with the potentiometer for the purpose of inrush current limitation. If a time longer than 0 s is set, the device operates according to the phase-angle principle. If 0 s is set, there is no voltage ramp and the device operates according to the principle of full-wave control.

Load fault

If upon switching on with voltage applied the current flowing is not greater than the residual current of the switching device, the device triggers a load fault. The fault relay is activated and the "Load" LED lights up.

Thyristor fault

If a current greater than the residual current of the switching device is measured in the deenergized state, the device triggers a thyristor fault. The fault relay is activated and the "Thyristor" LED lights up.

Supply fault

If no current is measured in the energized state, the device triggers a supply fault. The fault relay is activated and the "Supply" LED lights up.

Selection and ordering data

Rated operational current l_{e}	Rated operational voltage U_{e}	DT	Rated control supply voltage U_{s} AC 110 V	PS*	Weight per PU approx	DT	Rated control supply voltage U_{s} AC/DC 24 V	PS*	Weight per PU approx
A	V		Order No.		kg		Order No.		kg
Power controllers									
$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 400 \ldots 600 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OHA33 } \\ & \text { 3RF29 20-OHA36 } \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.120 \\ & 0.120 \end{aligned}$	A	3RF29 20-0HA13 3RF29 20-0HA16	1 unit 1 unit	$\begin{aligned} & 0.120 \\ & 0.120 \end{aligned}$
$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 400 \ldots 600 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { 3RF29 50-OHA33 } \\ & \text { 3RF29 50-OHA36 } \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.120 \\ & 0.120 \end{aligned}$	A	3RF29 50-0HA13 3RF29 50-OHA16	1 unit 1 unit	$\begin{aligned} & 0.120 \\ & 0.120 \end{aligned}$
$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 400 \ldots 600 \end{aligned}$	A	3RF29 90-0НА33 3RF29 90-OHA36	1 unit 1 unit	0.120 0.120	A	$\begin{aligned} & \text { 3RF29 90-0HA13 } \\ & \text { 3RF29 90-OHA16 } \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.120 \\ & 0.120 \end{aligned}$

SIRIUS SC Semiconductor Switching Devices Semiconductor Relays and Contactors, Function Modules

Characteristics

SIRIUS SC semiconductor relays

Dependence of the device current l_{e} on the ambient temperature T_{a}

SIRIUS SC semiconductor relay with 30 A type current (3RF21 30/3RF20 30)

SIRIUS SC semiconductor relay with 50 A type current (3RF21 50/3RF20 50)

1) Arrangement example for $I_{e}=20 \mathrm{~A}$ and $T_{a}=40 \mathrm{C}$ The task is to find the thermal resistance $R_{\text {thha }}$ and the heat-sink overtemperature $d T_{\text {ha: }}$. From the diagram on the left $\rightarrow P_{\mathrm{M}}=28 \mathrm{~W}$, from the diagram on the right $->R_{\text {thha }}=1.7 \mathrm{~K} / \mathrm{W}$.

This results in: $d T_{\text {ha }}=R_{\text {thha }} \times P_{\mathrm{M}}=1.7 \mathrm{~K} / \mathrm{W} \times 28 \mathrm{~W}=47.6 \mathrm{~K}$. At
$\boldsymbol{d} \boldsymbol{T}_{\text {ha }}=47.6 \mathrm{~K}$ the heat sink must therefore have an $R_{\text {thha }}=1.7 \mathrm{~K} / \mathbf{W}$.

SIRIUS SC Semiconductor Switching Devices

Semiconductor Relays and Contactors, Function Modules

Project planning aids

Dependence of the device current l_{e} on the ambient temperature T_{a}
SIRIUS SC semiconductor relay with 70 A type current (3RF21 70/3RF20 70)

SIRIUS SC semiconductor relay with 88 A type current (3RF21 90/3RF20 90)

SIRIUS SC semiconductor contactors

Derating curves
SIRIUS SC semiconductor contactor with 10 A type current (3RF23 10)

SIRIUS SC Semiconductor Switching Devices Semiconductor Relays and Contactors, Function Modules

Derating curves

SIRIUS SC semiconductor contactor with 20 A type current (3RF23 20)

SIRIUS SC semiconductor contactor with 30 A type current (3RF23 30)

SIRIUS SC semiconductor contactor with 40 A type current (3RF23 40) ${ }^{1)}$

[^0]

1) Identical current/temperature curves for individual and side-by-side mounting.

SIRIUS SC Semiconductor Switching Devices

 Semiconductor Relays and Contactors, Function Modules
Project planning aids

Derating curves
SIRIUS SC semiconductor contactor with 50 A type current (3RF2350) ${ }^{1)}$

SIRIUS SC semiconductor contactor with 70 A type current (3RF23 70) ${ }^{1)}$

SIRIUS SC semiconductor contactor with 88 A type current (3RF23 90) ${ }^{1 \text {) }}$

__ $I_{\max }$ Thermal limit current for individual mounting

- - - $I_{\max }$ Thermal limit current for side-by-side mounting
- $I_{\text {IEC }}$ Current acc. to IEC 947-4-3 for individual mounting
- — $\quad I_{\text {IEC }}$ Current acc. to IEC 947-4-3 for side-by-side mounting

1) Identical current/temperature curves for individual and side-by-side mounting.

SIRIUS SC Semiconductor Switching Devices Semiconductor Relays and Contactors, Function Modules

Project planning aids
Dimension drawings
SIRIUS SC semiconductor relays
22.5 mm semiconductor relays

Screw connection 3RF21 .0-1AA..

45 mm semiconductor relays
3RF20 .0-1AA.

SIRIUS SC Semiconductor Switching Devices

Semiconductor Relays and Contactors, Function Modules

Project planning aids

SIRIUS SC semiconductor contactors

Semiconductor contactors with 10 A and 20 A type current

Semiconductor contactors with 30 A type current

Screw connection 3RF23 30-1....

Ring connection
3RF23 30-3....

Semiconductor contactors with 40 A and 50 A type current

Screw connection 3RF23 40-1...
3RF23 50-1....

Ring connection 3RF23 40-3... 3RF23 50-3...

SIRIUS SC Semiconductor Switching Devices Semiconductor Relays and Contactors, Function Modules

Project planning aids

Semiconductor contactors with 88 A type current

Screw connection
3RF23 90-1....

Ring connection
3RF23 90-3...

SIRIUS SC Semiconductor Switching Devices

Semiconductor Relays and Contactors, Function Modules

Project planning aids

Function modules for SIRIUS SC semiconductor switching devices
Converters
3RF29 00-0EA18

Extended load monitoring
3RF29 .0-0GA..

Power controllers
3RF29 .0-0HA..

Accessories for SIRIUS SC semiconductor switching devices
Terminal cover for SIRIUS semiconductor switching devices
3RF29 00-3PA88

SIRIUS SC Semiconductor Switching Devices Semiconductor Relays and Contactors, Function Modules

Project planning aids

Circuit diagrams

SIRIUS SC semiconductor relays

AC version

SIRIUS SC semiconductor contactors

DC version

AC version

Function modules for SIRIUS SC semiconductor switching devices

Basic load monitoring

Extended load monitoring

Power controllers

1) Internal connection.
2) Straight-through transformer.

SIRIUS SC semiconductor relays

SIRIUS SC Semiconductor Switching Devices

Semiconductor Relays and Contactors, Function Modules

Project planning aids

Converters Typical circuit diagram

Extended load monitoring Typical circuit diagram

1) Internal connection.
2) Straight-through transformer.
3) $P E /$ ground connection for semiconductor contactors according to installation regulations.
4) Connection of contact L / N to N conductor or a second phase according to the rated operational voltage of the function module.
5) In order to observe the limit values of the conducted interference voltage for generalized phase control, a choke rated at at least $200 \mu \mathrm{H}$ must be included in the load circuit.

Basic load monitoring Typical circuit diagram

Power controllers Typical circuit diagram

General data

Overview

These properties apply to all soft starters:

- Soft starting and smooth ramp-down ${ }^{1)}$
- Stepless starting
- Reduction of current peaks
- Avoidance of mains voltage fluctuations
- Reduced load on the power supply network
- Reduction of the mechanical load in the operating mechanism
- Considerable space savings and reduced wiring compared
corventional starters
- Maintenance-free switching
- Very easy handling

\checkmark Function is available
Function not available

1) Smooth ramp-down not available for 3RW31.

For more information on the Internet go to
www.siemens.de/sanftstarter

SIRIUS/SIKOSTART Soft Starters
 For Standard Applications

SIRIUS soft starters

Overview

SIRIUS 3RW30/31

Various versions of the 3RW30/31 SIRUS soft starters are available:

- Standard version for fixed frequency three-phase motors, sizes S00, S0, S2 and S3
- Version for fixed-speed three-phase motors in a 22.5 mm enclosure
- Special-purpose version 3RW31 for Dahlander motors only in size S0
- Version for soft starting single-phase motors of sizes S0, S2 and S3.

SIRIUS 3RW30/31 for three-phase motors

Soft starters rated up to 55 kW (at 400 V) for standard applications in three-phase networks. Extremely small sizes, low power losses and simple commissioning are just a few of the many advantages of this soft starter. The special feature of the 3RW31 series is that it allows independent definition of two separate acceleration ramps (Dahlander motors).

SIRIUS 3RW30 for single-phase motors

The additional version for standard applications in single-phase networks. Its voltage edge function reduces the motor's inrush current and effectively lowers the torque at the point of starting up, which protects the load and the supplying network.

Area of application

The SIRIUS solid-state soft starters are suitable for soft starting and stopping of three-phase asynchronous machines.

Due to two-phase control, the current is kept at minimum values in all three phases throughout the entire starting time. Due to continuous voltage influencing, current and torque peaks, which are unavoidable in the case of star-delta starters, for instance, do not occur.
Service range
Pumps, compressors, conveyors, and much more.

Functions

- Soft starting with voltage ramp; the starting voltage adjustment range U_{S} is 40% to 100% and the ramp time t_{R} can be set from 0 s to 20 s .
- Smooth ramp-down with voltage ramp; the running down time $t_{\text {off }}$ can be set between 0 s to 20 s . Whereby the switch-off voltage $U_{\text {off }}$ is dependent on the selected starting voltage U_{s}.
- Setting with three potentiometers
- Simple mounting and commissioning
- Mains voltages at $50 / 60 \mathrm{~Hz} 200$ V to 575 V
- Two control voltage versions are available: AC/DC 24 V and AC/DC 110 V to 230 V
- Wide temperature range from $-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
- Integrated bypass contacts to minimize dissipated power.
- Two built-in auxiliary contacts in sizes S0, S2 and S3 ensure user-friendly control and possible further processing within the system (for additional graphs, see page 3/52).

Technical specifications

Type			3RW30 03	3RW3 . .-1.B0.		3RW3 . .--1.B1.	
Control electronics							
Rated control supply voltage		V	$\begin{aligned} & \text { AC/DC } 24 \ldots 230 \\ & (\pm 10 \%) \end{aligned}$	$\begin{aligned} & \text { AC/DC } 24 \\ & (+10 \% /-15 \%) \end{aligned}$		$\begin{aligned} & \text { AC/DC } 110 \ldots 230 \\ & (+10 \% /-15 \%) \end{aligned}$	
Rated control supply current without fan/with fan		mA	$25 . .4$	approx. 50/approx. 180		$\begin{aligned} & \text { approx. } 25 \ldots 20 / \\ & \text { approx. } 85 \ldots 8 \\ & \hline \end{aligned}$	
Rated frequency for AC		Hz	50/60 ± 10 \%				
Starting time		s	0 ... 20 (variable)				
Starting voltage		\%	$40 . . .100$ (variable)				
Ramp-down time		S	0 ... 20 (variable)				
Type			3RW30 03	3RW3 . ..-1.B. 4	3RW3 . .--1.B. 5		3RW30 ..-1AA12
Power electronics							
Rated operating voltage V			AC/DC 200 ... 400, 3-phase (± 10 \%)	$\begin{aligned} & \text { AC } 200 \ldots 460 \\ & \text { 3-phase } \\ & (\pm 10 \%) \end{aligned}$	$\begin{aligned} & \text { AC } 460 \ldots 575 \\ & \text { 3-phase } \\ & (\pm 10 \%) \end{aligned}$		$\begin{aligned} & \text { AC } 115 \ldots 240 \\ & \text { 1-phase } \\ & (\pm 10 \%) \end{aligned}$
Rated frequency		Hz	50/60 $\pm 10 \%$				
Permissible installation altitude	Reduction of I_{e} - up to 1000 m above sea level - up to 2000 m above sea level - up to 3000 m above sea level - up to 4000 m above sea level ${ }^{11}$	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & 100 \\ & 92 \\ & 85 \\ & 78 \\ & \hline \end{aligned}$				
Mounting position	without auxiliary fan		The soft starters have been designed for operation on a vertical mounting surface $\left(+10^{\circ} \%-10^{\circ}\right)$.				
	with auxiliary fan		-	Any mounting position (except vertical, rotated by 180°)			

1) At an altitude from 3000 m , the max. permissible operating voltage for all $3 R W 30$ is reduced to 460 V .

SIRIUS/SIKOSTART Soft Starters For Standard Applications

SIRIUS soft starters

Type Size		3RW30 03	3RW30 1. S00	3RW30 2. SO	3RW30 3. S2	3RW30 4. S3
Continuous operation (\% of l_{e})	\%	100				
Minimum load ${ }^{1}$ ($\%$ of $\left.I_{\mathrm{e}}\right)$; at $40{ }^{\circ} \mathrm{C}$	\%	9	4			
Permissible ambient temperature $\begin{aligned} & \text { Operation } \\ & \text { Storage }\end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$-25 \ldots+60$ (derating from $40^{\circ} \mathrm{C}$, see load rating) $-25 \ldots+80$				
Switching capacity of the auxiliary contacts	230 V/AC-15 A 230 V/DC-13 A 24 V/DC-13 A	No auxiliary	ntacts available	$\begin{aligned} & 3 \\ & 0.1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 0.1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 0.1 \\ & 1 \end{aligned}$

1) The rated motor current (specified on the motor's name plate) should at least amount to the specified percentage of the SIRIUS soft starter's rated operational current l_{e}.

Type			3RW30 03	3RW30 14	3RW30 16	3RW3. 24	3RW3. 25	3RW3. 26
Load rating								
Rated operating current $I \mathrm{e}$ - Acc. to IEC for individual mounting - Acc. to UL/CSA for individual mounting - Acc. to IEC/UL/CSA for individual mounting - acc. to IEC/UL/CSA for side-by-side mounting	at $40 / 50 / 60{ }^{\circ} \mathrm{C}, \mathrm{AC}-53 \mathrm{~b}$ at $40 / 50 / 60{ }^{\circ} \mathrm{C}, \mathrm{AC}-53 \mathrm{~b}$ at $40 / 50 / 60{ }^{\circ} \mathrm{C}, \mathrm{AC}-53 \mathrm{a}$ at $40 / 50 / 60{ }^{\circ} \mathrm{C}, \mathrm{AC}-53 \mathrm{a}$	A A A A	$\begin{aligned} & 3 / 2.6 / 2.2 \\ & 2.6 / 2.2 / 1.8 \end{aligned}$	$\begin{aligned} & 6 / 5 / 4 \\ & 4.8 / 4.8 / 4 \end{aligned}$	$\begin{aligned} & 9 / 8 / 7 \\ & 7.8 / 7.8 / 7 \end{aligned}$	$\begin{aligned} & 12.5 / 11 / 9 \\ & 11 / 11 / 9 \end{aligned}$	$\begin{aligned} & 16 / 14 / 12 \\ & 17.5 / 14 / 12 \end{aligned}$	$\begin{aligned} & 25 / 21 / 18 \\ & 25 / 21 / 18 \end{aligned}$
Power loss at continuous rated operating curre at utilization of max. operating f	($40^{\circ} \mathrm{C}$) approx. ency $\left(40^{\circ} \mathrm{C}\right)$ approx.	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 6.5 \\ & 3 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 9 \\ & 8 \end{aligned}$	$\begin{aligned} & 13 \\ & 9 \end{aligned}$
Permissible starts per hour wit for intermittent duty S4, $T_{\mathrm{u}}=40$ ON-period $=30 \%$ ON-period = 70 \%	using a fan ndividual mounting vertical	$\begin{aligned} & 1 / \mathrm{h} \\ & \% ~ \mathrm{l}^{2} / \mathrm{s} \\ & \% \mathrm{le}_{\mathrm{e}} / \mathrm{s} \end{aligned}$	$\begin{aligned} & 1500 \\ & \hline 300 / 0.2 \end{aligned}$	$\begin{aligned} & 60 \\ & 250 / 2 \end{aligned}$	40	$\begin{aligned} & 30 \\ & 300 / 2 \end{aligned}$		12
Permissible starts per hour w for intermittent duty $\mathrm{S} 4, T_{\mathrm{u}}=40$ ON-period = 30%	using a fan ndividual mounting,	1/h	Fans cannot be	fitted		54		21
Pause intervals after continuo with I_{e} before a new start	duty	s	0					200
Degree of protection	acc. to IEC 60529		IP20 (IP00 termi	nal enclosur				
Maximum conductor length be	n soft starter and motor	m	$100{ }^{1)}$					
Conductor cross-sections Screw-type terminals (1 or 2 conductor connections) for standard screw driver size 2 and Pozidriv 2	Main conductors - Solid - Finely stranded with end sleeve - Stranded - AWG conductors, solid or stranded - Terminal screws - Tightening torque Auxiliary conductors - Solid - Finely stranded with end sleeve - AWG conductors, solid or stranded - Terminal screws - Tightening torque	mm^{2} $\mathrm{~mm}^{2}$ $\mathrm{~mm}^{2}$ AWG Nm $\mathrm{lb} . \mathrm{in}$ mm^{2} $\mathrm{~mm}^{2}$ AWG Nm $\mathrm{lb} . \mathrm{in}$	$1 \times(0.5 \ldots 4) ;$ $2 \times(0.5 \ldots 2.5)$ $1 \times(0.5 \ldots 2.5) ;$ $2 \times(0.5 \ldots 1.5)$ - $2 \times(20 \ldots 14)$ M3, PZ2 $0.8 \ldots 1.2$ $7.1 \ldots 8.9$ $1 \times(0.5 \ldots 4) ;$ $2 \times(0.5 \ldots 2.5)$ $1 \times(0.5 \ldots 2.5) ;$ $2 \times(0.5 \ldots 1.5)$ $2 \times(20 \ldots 14)$ M3, PZ2 $0.8 \ldots 1.2$ $7 \ldots 8.9$		5); 2.5) 5) 5); $2 \times(0.75$.75 ... 4) 5); $2 \times(0.75$		60947;	
Spring-loaded terminals	Main and auxiliary conductors - Solid - Finely stranded with end sleeve - AWG conductors, solid or stranded	mm^{2} mm^{2} AWG	$\begin{aligned} & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots 1) \\ & 2 \times(24 \ldots 16) \end{aligned}$					

1) If this value is exceeded, problems with line capacities may arise, which can result in false firing.

SIRIUS/SIKOSTART Soft Starters
 For Standard Applications

SIRIUS soft starters

1) IP20 only with installed box terminal ('as-delivered'). Without box terminal IPOO.
2) If this value is exceeded, problems with line capacities may arise, which can result in false firing.

	Standard	Parameters
Electromagnetic compatibility acc. to EN 60947-4-2		
EMC interference immunity		
Electrostatic discharge (ESD)	IEC 61000-4-2	Degree of severity 3: 6/8 kV
Electromagnetic RF fields	IEC 60947-4-2	Frequency range: $80 \ldots 1000 \mathrm{MHz}$ with 80% at 1 kHz Degree of severity $3,10 \mathrm{~V} / \mathrm{m}$
Conducted RF interference	IEC 61000-4-6 IEC 60947-4-2 SN-IACS	Frequency range: $80 \ldots 1000 \mathrm{MHz}$ with 80% at 1 kHz 10 V at $0.15 \ldots 80 \mathrm{MHz}$ 3 V at $10 \mathrm{kHz} \ldots 80 \mathrm{MHz}$
Burst	IEC 61000-4-4	Degree of severity 3: $1 / 2 \mathrm{kV}$
Surge	IEC 61000-4-5	Degree of severity 3: $1 / 2 \mathrm{kV}$
EMC emitted interference		
EMC interference field strength	CISPR 11/09. 1990	Class B limit at $30 . . .1000 \mathrm{MHz}$
Radio interference voltage	CISPR 11/09. 1990 IEC 60 947-4-2	($0.15 \ldots 30 \mathrm{MHz}$): Device Class A (industrial)

SIRIUS/SIKOSTART Soft Starters For Standard Applications

SIRIUS soft starters
Is an RI suppression filter necessary?

| | 24 V AC/DC control voltage | 110 ... 240 V AC/DC control voltage | |
| :--- | :--- | :--- | :--- | :--- |
| | Main circuit | Control circuit | Main circuit |
| Degree of noise suppression A
 (industrial applications) | No | No | No |
| Degree of noise suppression B
 (applications for residential areas) | No | No | No |

1) "No" only applies if the control voltage is taken from the main circuit downstream of the RI suppression filter.
2) It may be preferable to use a device with 24 V AC/DC control voltage here; in that case the control voltage must be adapted with a transformer.

Soft starter type	Rated current	Recommended filters					
	Soft starter	Voltage range $200 . . .460 \mathrm{~V}$			Voltage range $460 . . .575$ V		
	A	Filter type	Rated current filter A	Connection terminals mm^{2}	Filter type	Rated current filter A	Connection terminals mm^{2}
3RW30 14	6	B84143-G8-R110	8	4	-	-	-
3RW30 16	9	B84143-G20-R110	20	4			-
3RW30 24	12.5	B84143-G20-R110	20	4	B8413-A25-R21	25	10
3RW30 25	16	B84143-G20-R110	20	4	B8413-A25-R21	25	10
3RW30 26	25	B84143-G36-R110	36	6	B8413-A25-R21	25	10
3RW30 34	32	B84143-G36-R110	36	6	B8413-A36-R21	36	10
3RW30 35	38	B84143-G36-R110	36	6	B8413-A36-R21	36	10
3RW30 36	45	B84143-G50-R110	50	6	B8413-A50-R21	50	10
3RW30 44	63	B84143-G66-R110	66	25	B8413-A80-R21	80	25
3RW30 45	75	B84143-G120-R110	120	50	B8413-A80-R21	80	25
3RW30 46	100	B84143-G120-R110	120	50	B8413-A120-R21	120	50

Contact address:
The suppression filters mentioned above can be ordered from
EPCOS AG (see Appendix \rightarrow External Partners).
3) No suppression filter is required for 3RW30 03.

SIRIUS/SIKOSTART Soft Starters
 For Standard Applications

SIRIUS soft starters

Fuse assignment

The coordination type to which the motor feeder with soft starter is mounted depends on the application-specific requirements. Normally, fuseless mounting (combination of circuit-breaker and
soft starter) is sufficient. If type 2 coordination is to be fulfilled, semiconductor fuses must be fitted in the motor feeder.

Fuseless version

| Soft starter | Circuit-breaker 1) |
| :--- | :--- |\quad Link module 2)

Type of coordination 1^{3} : $I_{\mathrm{q}}=50 \mathrm{kA}$ at 400 V

3RW30 03	3RV10 11	
3RW30 14	3RV10 11	3RA19 11-1A
3RW30 16	3RV10 11	3RA19 11-1A
3RW30 24/3RW31 24	3RV10 21	3RA19 21-1A
3RW30 25/3RW31 25	3RV10 21	3RA19 21-1A
3RW30 26/3RW31 26	3RV10 21	3RA19 21-1A
3RW30 34	3RV10 31	3RA19 31-1A
3RW30 35	3RV10 31	3RA19 31-1A
3RW30 36	3RV10 31	3RA19 31-1A
3RW30 44	3RV10 41	3RA19 41-1A
3RW30 45	3RV10 41	3RA19 41-1A
3RW30 46	3RV10 41	3RA19 41-1A

1) The rated motor current defines the selection of units.
2) Pay attention to quantity units.
3) The types of coordination are explained in more detail under Load Feeders -> Fuseless Load Feeders.

Fused version (line protection only)						
F1						Contactor
Soft starter	Line protection			Overload relay		
Type	Type	Rated current	Size	Thermal type	Solid-state type	Type
G1	F1	A		F2		K1
Type of coordination 1^{1}) $I_{\text {q }}=50 \mathrm{kA}$ at 400 V						
3RW30 03 3RW30 14 3RW30 16 3RW30 24/3RW31 24 3RW30 25/3RW31 25 3RW30 26/3RW31 26 3RW30 34 3RW30 35 3RW30 36 3RW30 44 3RW30 45 3RW30 46	3NA3 $805^{2)}$ 3NA3 807 3NA3 807 3NA3 807 3NA3 810 3NA3 814 3NA3 822 3NA3 822 3NA3 824 3NA3 830 3NA3 132 3NA3 140	20 20 20 20 25 35 63 63 80 100 125 200	000 000 000 000 000 000 000 000 000 000 1 1	3RU11 16 3RU11 16 ${ }^{3)}$ $3 R U 11$ 16 ${ }^{3)}$ 3RU11 264) 3RU11 $26^{4)}$ 3RU11 $26^{4)}$ 3RU11 364) 3RU11 364) 3RU11 364) 3RU11 464) 3RU11 464) 3RU11 464)	3RB10 16 3RB10 $16^{3)}$ 3RB10 $16^{3)}$ 3RB10 $26^{4)}$ 3RB10 $26^{4)}$ 3RB10 $26^{4)}$ 3RB10 36 3RB10 36 3RB10 36 3RB10 46 3RB10 46 3RB10 46	3RT10 15 3RT10 15 3RT10 16 3RT10 24 3RT10 25 3RT10 26 3RT10 34 3RT10 35 3RT10 36 3RT10 44 3RT10 45 3RT10 46
1) The types of coordination are explained in more detail under Load Feeders -> Fuseless Load Feeders.						
3) $I_{\mathrm{q}}=50 \mathrm{kA}$ up to max. of 400 V . 4) $I_{q}=50 \mathrm{kA}$ up to max . of 500 V .		2 01-06 (NEOZ				

SIRIUSISIKOSTART Soft Starters For Standard Applications

SIRIUS soft starters
Fused version with 3NE1 SITOR fuses (semiconductor and line protection ${ }^{1)}$

1) Contactor and overload relay as in "Fused version (line protection only)" table.
2) The types of coordination are explained in more detail under Load Feeders -> Fuseless Load Feeders.
3) No SITOR fuse required!

Alternatively: 3NA38 03 (NH0O), 5SB22 1 (DIAZED), 5SE22 06 (NEOZED)
Fused version with 3NE8 SITOR fuses ${ }^{1)}$ (semiconductor protection by fuse, lead and overload protection by circuit-breaker; alternatively, installation with contactor and overload relay possible)

Semiconductor protection fuse Type F3
Type
G1
4) Fuse coordination for up to 400 V .
5) Fuse coordination for up to 500 V .
6) Fuse coordination with all-range fuses not possible; it may be necessary to use a pure semiconductor protection fuse plus a circuit-breaker.

Type of coordination 2^{4} : $I_{\mathrm{q}}=50 \mathrm{kA}$ at 400 V

3RW30 14

3RW30 16
3RW30 24/3RW31
3RW30 25/3RW31 25
3RW30 26/3RW31 26
3RW30 34
3RW30 35
3RW30 36
3RW30 44
3RW30 45
3RW30 46
) Contacto
2) The rated motor current defines the selection of units
3) Pay attention to quantity units
4) The types of coordination are explained in more detail under Load Feeders -> Fuseless Load Feeders.

Soft starter	Semiconductor protection fuse			Circuit-breaker ${ }^{2)}$	Link module ${ }^{3)}$
Type	Type	Rated current	Size	Type	Type
G1	F3	A		Q1	
Type of coordination $2^{4)}$: $I_{q}=50 \mathrm{kA}$ at 400 V					
3RW30 03	3NE8 015-1	25	00	3RV10 11 ${ }^{\text {5) }}$	3RA19 11-1A
3RW30 14	3NE8 003-1	35	00	3RV10 11	3RA19 11-1A
3RW30 16	3NE8 003-1	35	00	3RV10 11	3RA19 11-1A
3RW30 24/3RW31 24	3NE8 003-1	35	00	3RV10 21	3RA19 21-1A
3RW30 25/3RW31 25	3NE8 003-1	35	00	3RV10 21	3RA19 21-1A
3RW30 26/3RW31 26	-6)	-	-	-	-
3RW30 34	3NE8 022-1	125	00	3RV10 31	3RA19 31-1A
3RW30 35	3NE8 024-1	160	00	3RV10 31	3RA19 31-1A
3RW30 36	3NE8 024-1	160	00	3RV10 31	3RA19 31-1A
3RW30 44	3NE8 024-1	160	00	3RV10 41	3RA19 41-1A
3RW30 45	3NE8 024-1	160	00	3RV10 41	3RA19 41-1A
3RW30 46	3NE8 024-1	160	00	3RV10 41	3RA19 41-1A

5) No SITOR fuse required!
Alternatively: 3NA38 03 (NH00), 5SB22 1 (DIAZED), 5SE22 06 (NEOZED).
6) Fuse coordination with semiconductor protection fuses not possible; it may be necessary to use pure 3NE1..-0 all-range fuses or the next highest soft starter.

SIRIUS/SIKOSTART Soft Starters

For Standard Applications

SIRIUS soft starters

Selection and ordering data

3RW30 03-2CB54

3RW30 25-1AB14

3RW30 35-1AB14

3RW30 35-1AA12

Order No. extension for rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$
AC/DC 24 V
0
1
Soft starters with two-ramp control for three-phase induction motors with two speeds
(double pole-reversing)
Rated control supply voltage U_{s} AC $110 \ldots 230 \mathrm{~V}$

$200 . . .460$	12.5	-	3	5.5	-	11	-	3	3	7.5	-	S0	A	3RW31 24-1CB14	1 unit	0.468
	16	-	4	7.5	-	14	-	3	3	10	-	SO	A	3RW31 25-1CB14	1 unit	0.475
	25	-	5.5	11	-	21	-	5	5	15	-	S0	A	3RW31 26-1CB14	1 unit	0.464
460 ... 575	12.5	-	-	-	7.5	11	-	-	-	7.5	10	S0	A	3RW31 24-1CB15	1 unit	0.467
	16	-	-	-	7.5	14	-	-	-	10	10	S0	C	3RW31 25-1CB15	1 unit	0.476
	25	-	-	-	15	21	-	-	-	15	20	S0	A	3RW31 26-1CB15	1 unit	0.475
Soft starters for single-phase motors																
115 ... 240	25	2.2	4	-	-	21	1.5	3	3	-	-	S0	-	3RW30 26-1AA12	1 unit	0.439
	38	3	5.5	-	-	32	2	5	5	-	-	S2	A	3RW30 35-1AA12	1 unit	0.729
	75	5.5	11	-	-	64	5	10	10	-	-	S3	A	3RW30 45-1AA12	1 unit	1.390

1) The units will be converted to "removable terminal" starting mid-2004.
2) $3 R W 3046-1 A B 05$ soft starters (AC/DC 24 V version):

Delivery time on request.
Selection of the soft starter depends on the motor's rated current.

The SIRIUS 3RW3 solid-state soft starters are designed for easy starting conditions. $J_{\text {Load }}<10 \times J_{\text {Motor }}$. In the event of deviating conditions or increased switching frequency, it may be necessary to choose a larger unit. Siemens recommends the use of the selection and simulation program Win-SIKOSTART. See Technical specifications for information about rated currents for ambient temperatures $>40^{\circ} \mathrm{C}$.

Accessories

1) With internal soft starter power supply.

	Version	Functionality Functions	Application	DT	Order No.	PS*	Weight per PU approx.kg
Covering cap and plug-in lug (only for 3RW30 03)							
	Sealable cap	for securing against unauthorized maladjustment of setting knobs	for units with 1 or 2 changeover contacts	-	3RP19 02	5 units	0.019
	Push-in lug for screw fixing		for units with 1 or 2 changeover contacts	-	3RP19 03	$\begin{array}{r} 10 \\ \text { units } \end{array}$	0.018

SIRIUS/SIKOSTART Soft Starters

For Standard Applications
SIRIUS soft starters

1) Computer labeling system for individual labeling of device labeling plates available from:
murrplastik Systemtechnik GmbH (see Appendix -> External Partners).

2) Without connectors for data and auxiliary power (yellow and black).
3) With one connector each for data and auxiliary power (yellow and red).

For busbar accessories, see Load feeders -> Busbar Adapter System.

SIRIUS/SIKOSTART Soft Starters

For Standard Applications
SIRIUS soft starters

Circuit diagrams
Connection examples for actuation with switches or auxiliary contacts

Control via contacts
in versions for pole-changing
motors
(for 3RW31 soft starters only)

Control via contactor
contacts in versions for pole-changing motors (for 3RW31 soft starters only)

Connection example for control with pushbuttons (sizes S0, S2, and S3 only)

SIRIUS/SIKOSTART Soft Starters
 For Standard Applications

SIRIUS soft starters
Connection examples for main circuit ${ }^{11}$
3RW30-3-ph. mot. 3RW30-3-ph. mot. with overload relay with circuit-breaker

with 3RV circuit-breaker

Connection example for AS-Interface load feeder with SIRIUS soft starter

Main circuit

Q1 = circuit-breaker
G1 = SIRIUS soft starter 3RW30 1
X5 = power supply connector

Control circuit

1) As an alternative, the motor feeder can also be installed as a fuseless or as a fused version. For details of fuse and switching device coordination, see page $3 / 44$ and $3 / 45$. The wiring diagrams are provided only as examples.

SIRIUS/SIKOSTART Soft Starters
 For Standard Applications

SIRIUS soft starters

Further information

Configuration

The 3RW solid-state soft starters are designed for easy starting conditions. In the event of deviating conditions or increased switching frequency, it may be necessary to choose a larger device. For accurate dimensioning, use the Win-SIKOSTART selection and simulation program.
If necessary, an overload relay for heavy-starting must be selected where long starting times are involved. PTC thermistor detectors are recommended. This also applies to smooth rampdown. In this case an additional current load is effective compared with a free running down.
In the motor feeder between the SIRIUS 3RW3 soft starter and the motor, no capacitive elements are permitted (e.g. no compensation equipment).
All elements of the main circuit (such as fuses, switching devices and overload relays) should be dimensioned for direct starting, following the local short-circuit conditions. Fuses, switching devices and overload relays must be ordered separately. Please observe the maximum switching frequencies specified in the technical specifications.

Power electronics circuit diagram ${ }^{1)}$

Control with a PLC

When a 3RW30 is operated with a Triac output or thyristor output, the residual current at the PLC output should be $<1 \mathrm{~mA}$ because otherwise the 3RW30 will interpret the resultant voltage drop at the input as an "On" command. As a corrective measure for PLC outputs with a higher residual current, an RC element with > 100 nF and 220 W can be connected in series between "IN1" and terminal "A2" of the 3RW30 (Order No.: 3TX7 462-3T see page 3/49).

Selection and simulation program Win-SIKOSTART

With this software, you can simulate and select all Siemens soft starters, taking into account various parameters such as mains properties, motor and load data, and special application requirements.

The software is a valuable tool, which makes complicated, lengthy manual calculations for determining the required soft starters superfluous.

You can order the CD-ROM under the following order number: Order No.: E20001-D1020-P302-X-7400.

For more information on the Internet go to www.siemens.de/sanftstarter

Status graphs

3RW30-3-ph. mot.

Auxiliary contacts
(sizes S0 ... S3 only)

3RW31

1) Circuit diagram applies to sizes $S 0$ and $S 2$; for size S00, phase L3 is bridged, for size S3, phase L2 is bridged.

SIRIUS/SIKOSTART Soft Starters For Standard Applications

SIKOSTART soft starters

Overview

SIKOSTART 3RW34

Just as easily as with the SIRIUS soft starters, three-phase asynchronous motors with rated operating power of up to 1000 kW (at 400 V) can be controlled with SIKOSTART 3RW34. Soft starting and soft deceleration are standard functions of this device. Fast commissioning, small sizes and simple installation are the key benefits here.
The devices can be operated with two different contact sequences:

- Inline circuit
- Inside-delta circuit

Area of application

The 3RW34 solid-state soft starters are suitable for soft starting and stopping of three-phase asynchronous motor.

Service range

Pumps, compressors, conveyors, and much more.

Functions

- Soft starting with voltage ramp; the starting voltage adjustment range U_{S} is 30% to 80% and the ramp time t_{R} can be set from 0.5 s to 60 s .
- Smooth ramp-down with voltage ramp; the running down time $t_{\text {off }}$ can be set between 0.5 s to 60 s . Whereby the switch-off voltage $U_{\text {off }}$ is dependent on the selected starting voltage U_{s}.
- Setting with three potentiometers
- Simple mounting and commissioning
- Mains voltages at $50 / 60 \mathrm{~Hz} 200 \mathrm{~V}$ to 600 V
- Three control voltage variants for DC 24 V , AC 115 V and AC 230 V
- Extended temperature range: $0 \ldots+60^{\circ} \mathrm{C}$

Technical specifications

1) The rated motor current (specified on the motor's name plate) should amount to at least 4% of the SIKOSTART unit's rated current l_{e}.
2) If this value is exceeded, problems with line capacities may arise, which can result in false firing

SIRIUS/SIKOSTART Soft Starters

For Standard Applications
SIKOSTART soft starters

Type			3RW34 54	3RW34 55	3RW34 57	3RW34 58	3RW34 65	3RW34 66
Load rating								
Rated operating current $/ e^{1 \text { 1) }}$	at $40 / 50 / 60{ }^{\circ} \mathrm{C}, \mathrm{AC}-53 \mathrm{a}$	A	57/42/35	70/57/42	110/81/57	135/110/81	162/135/110	195/162/135
Power loss at rated operating current ($40^{\circ} \mathrm{C}$) approx.		W	158	190	306	358	493	515
Permissible starts per hour for intermittent duty S4 $T_{u}=40^{\circ} \mathrm{C}$ ON-period $=30 \%$ and $300 \% \times I_{e}$ for $10 s$		1/h	20					
Conductor cross-sections								
Screw-type terminals (1 or 2 conductor connections) for standard screw driver size 2 and Pozidriv 2	Main conductors - Stranded Auxiliary conductors	mm^{2}	95			120	150	240
	- Solid - Finely stranded with end sleeve - AWG conductors, solid or stranded - Terminal screws - Tightening torque	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$ AWG Nm); $2 \times(0.75$ 5); $2 \times(0.75$.. $10.3 \mathrm{lb} . \mathrm{in})$.. 2.5) accord 2.5)	to IEC 60947	$; \max .2 \times(0.7$	$75 \text {... 4) }$
Rated control supply currents Control inputs	DC 24 VmA AC 230 V mA		approx. 45 approx. 13					
Fans	DC 24 VmA AC 230 V mA		approx. 400 approx. 200				approx. 200 approx. 140	

1) The rated operating current in the inline circuit is specified.

2) The rated operating current in the inline circuit is specified.
3) The busbars must not be connected directly to the soft starter. Flexible busbar connection pieces must be used for the connection.

SIKOSTART soft starters

Radio interference suppression			
	Standard	Parameters	
Noise immunity			
Electrostatic discharge (ESD)	IEC 61000-4-2, EN 60947-4-2	Pulse shape: $1 / 60 \mathrm{~ns}$ Test severity 6 kV or 8 kV 4 kV charging voltage in the event of contact discharge 8 kV charging voltage in the event of air discharge	5
Electromagnetic RF fields	IEC 61000-4-3, EN 60647-4-2	Frequency range: $80 \mathrm{MHz} . .1000 \mathrm{MHz}$ with 80% at 1 kHz field strength $10 \mathrm{~V} / \mathrm{m}$	
Conducted low-frequency interference (harmonics)	IEC 60 947-4-2	Frequency range: $50 \mathrm{~Hz} . . .10 \mathrm{kHz}$	
RF-voltages and RF-currents on conductors	$\begin{aligned} & \text { IEC 61000-4-6, } \\ & \text { EN 60947-4-2 } \end{aligned}$	Frequency range: $80 \mathrm{MHz} \ldots 1000 \mathrm{MHz}$ with 80% at 1 kHz 10 V at $0.15 \mathrm{MHz} \ldots 80 \mathrm{MHz}$	
Burst	IEC 61000-4-4	Test severity: 2 kV or 1 kV	
Surge	IEC 61000-4-5	Test severity: 2 kV or 1 kV	
Emitted interference			
Radio interference field strength	CISPR 11/09. 1990 EN 60947-4-2	H field: $150 \mathrm{kHz} . . .30 \mathrm{MHz}$ E field: $30 \mathrm{MHz} . .1000 \mathrm{MHz}$ limit value of Class B at $30 \mathrm{MHz} \ldots 1000 \mathrm{MHz}$	
Radio interference voltage	$\begin{aligned} & \text { CISPR 11/09.1990 } \\ & \text { EN 60947-4-2 } \end{aligned}$	Frequency range: $9 \mathrm{kHz} \ldots 30 \mathrm{MHz}$ ($0.15 \mathrm{MHz} \ldots 30 \mathrm{MHz}$): Unit Class A (industry) and unit Class B (public networks)	
Example connections	Inline circuit	Inside-delta circuit	

Is an RI suppression filter necessary?

		24 V DC control voltage				230 V AC control voltage			
		Main circuit		Control circuit		Main circuit		Control circuit	
Degree of noise suppression A (industrial applications)		No		No		No		No	
Degree of noise suppression B (applications for residential areas)		Yes (see table of recommended filters)		No		Yes (see table of recommended filters)		No	
Soft starter type	Rated current soft starter A	Recommended filters							
		Voltage range $200 . . .460 \mathrm{~V}$				Voltage range $460 . . .600 \mathrm{~V}$			
		Filter type	Rated filter A	current	Connection terminals mm^{2}	Filter type	Rated filter A	current	Connection terminals mm^{2}
3RW34 54	57	B84143-G66-R110	66		25	B84143-A80-R21	80		25
3RW34 55	70	B84143-G66-R110	66		25	B84143-A80-R21	80		25
3RW34 57	110	B84143-G120-R110	120		50	B84143-A120-R21	120		50
3RW34 58	135	B84143-G150-R110	150		50	B84143-A150-R21	150		50
3RW34 65	162	B84143-G220-R110	220		95	B84143-A180-R21	180		95
3RW34 66	195	B84143-G220-R110	220		95	B84143-B250-S21	250		$40 \times 25 \times 51)$
3RW34 67	235	B84143-G220-R110	220		95	B84143-B250-S21	250		$40 \times 25 \times 5^{1)}$
3RW34 72	352	B84143-B400-S20	400		$40 \times 25 \times 5^{1)}$	B84143-B400-S21	400		$40 \times 25 \times 5^{1)}$
3RW34 83	500	B84143-B600-S20	600		$40 \times 30 \times 5^{11}$	B84143-B600-S21	600		$40 \times 30 \times 5^{1)}$
3RW34 84	700	B84143-B1000-S20	1000		$50 \times 40 \times 8^{1)}$	B84143-B1000-S21	1000		$50 \times 40 \times 8^{1)}$
3RW34 86	1050	B84143-B1000-S20	1000		$50 \times 40 \times 8^{1)}$	B84143-B1000-S21	1000		$50 \times 40 \times 8^{1)}$

1) Busbar connection: $\mathrm{L} \times W \times H$

Contact address:
The suppression filters mentioned above can be ordered from
EPCOS AG (see Appendix -> External Partners).

SIRIUS/SIKOSTART Soft Starters

For Standard Applications

SIKOSTART soft starters

Circuit examples

Inline circuit

The all-range fuse F'1 (semiconductor and conductor protection) and semiconductor protection F3 must be selected with the aid of the fuse assignment table.

Soft starter type	Rated current A	Fuse, lead fuse F1 (type 1 coordina- tion)	Line contactor acc. to AC-3 ${ }^{1)}$ K1	Overload relay thermal F2	electronic F2	Circuit-breaker for motor protection 2) Q1	Power electronics and bridging contactor acc. to AC-1 ${ }^{1)}$ K2
Recommended motor feeders in inline circuit							
3RW34 54 3RW34 55 3RW34 57 3RW34 58 3RW34 65 3RW34 66 3RW34 67 3RW34 72 3RW34 83 3RW34 84 3RW34 86	$\begin{aligned} & 57 \\ & 70 \\ & 110 \\ & 135 \\ & 162 \\ & 195 \\ & 235 \\ & 352 \\ & 500 \\ & 700 \\ & 1050 \end{aligned}$	3NA3 022 3NA3 024 3NA3 032 3NA3 036 3NA3 140 3NA3 140 3NA3 144 3NA3 254 ${ }^{3}$ 3NA3 365 3NA3 475 3NA3 482	$\begin{aligned} & \text { 3RT10 } 36 \\ & \text { 3RT10 } 45 \\ & \text { 3RT10 } 54 \\ & \text { 3RT10 } 55 \\ & \text { 3RT10 } 56 \\ & \text { 3RT10 } 64 \\ & \text { 3RT10 } 65 \\ & \text { 3RT10 } 75 \\ & \text { 3TF68 } \\ & \text { 3TF69 } \\ & 2 \times 3 \text { 3TF68 } \\ & (\text { parallel) } \\ & \hline \end{aligned}$	3RU11 46 3RU11 46	3RB10 46 3RB10 56 3RB10 56 3RB10 56 3RB10 56 3RB10 56 3RB10 66 3RB10 66 3RB10 66 3RB12 62	3RV10 41 3RV10 41 3VL27 16- AP 3VL27 16-. AP 3VL37 20-. AP 3VL37 25-. AP 3VL37 25-. AP 3VL47 40-. AP 3VL57 50-. AP 3WL11 08-EB 3WL11 12-EB	3RT10 35 3RT10 44 3RT10 46 3RT14 46 3RT14 56 3RT14 56 3RT14 56 3RT14 66 3RT14 76 3RT14 76 2×3 TF68 (parallel)
Recommended motor feeders in inside-delta circuit							
3RW34 54 3RW34 55 3RW34 57 3RW34 58 3RW34 65 3RW34 66 3RW34 67 3RW34 72 3RW34 83 3RW34 84 3RW34 86	99 121 191 234 281 338 407 610 866 1212 1819	3NA3 032 3NA3 036 3NA3 142 3NA3 144 3NA3 252 3NA3 $254^{3)}$ 3NA3 365 3NA3 472 3NA3 480 3NA3 682	3RT10 44 3RT10 45 3RT10 54 3RT10 55 3RT10 56 3RT10 64 3RT10 65 3RT10 75 3TF68 3TF69 2×3 TF68 (parallel)	3RU11 46 3RU11 46 3UA6. 01 3UA61 01 3UA62 01 3UA62 01	3RB10 46 3RB10 46 3RB12 53 3RB12 53 3RB12 53 3RB12 53 3RB12 57 3RB12 57 3RB12 57 3RB12 62	3VL27 16-.AP 3VL27 16-AP 3VL37 25-AP 3VL37 25-AP 3VL47 31-AP 3VL47 40-.AP 3VL57 63-AP 3VL57 63-.AP 3WL12 10-.EB 3WL12 12-EB 3WL12 20-.EB	3RT10 35 3RT10 44 3RT10 46 3RT14 46 3RT14 56 3RT14 56 3RT14 56 3RT14 66 3RT14 76 3RT14 76 2×3 TF68 (parallel)

1) Optional.
2) For SENTRON 3VL/3WL order number extension, see Circuit-breakers -> Circuit-breakers up to 500 A -> Compact (MCCB) SENTRON VL -> For motor/generator protection ETU.
3) See notes on low-voltage fuse links under Switch-disconnectors and fuses -> Fuses and fuse systems -> Low-voltage fuses.

	Fuse design with 3NE1 SITOR fuses with full utilization ${ }^{1)}$ of the soft starter (semiconductor and lead protection)				Fuse design with 3NE3 SITOR fuses with full utilization ${ }^{1)}$ of the soft starter, lowest possible protection, age-free (semiconductor protection)			Fuse design with 3NE3 SITOR fuses with full utilization ${ }^{1)}$ of the soft starter, highest possible protection, age-free (semiconductor protection)		
Soft starter	All-range fuse $\mathrm{F}^{\prime} 1$				Semiconductor fuse F3			Semiconductor fuse F3		
Type	Type	Rated current A	Size	Required conductor cross-section for each fuse mm^{2}	Type	Rated current A	Size	Type	Rated current A	Size
Type of coordination $2^{3)}$: $\mathrm{I}_{\mathrm{q}}=50 \mathrm{kA}$ at 400 V										
3RW34 54-0DC. 4	3NE1 021-0	100	00	35	3NE3 222	125	1	3NE3 225	200	1
3RW34 55-0DC. 4	3NE1 022-0	125	00	50	3NE3 224	160	1	3NE3 231	350	1
3RW34 57-0DC. 4	3NE1 225-0	200	1	95	3NE3 225	200	1	3NE3 233	450	1
3RW34 58-0DC.4 ${ }^{\text {2 }}$	3NE1 227-0	250	1	120	3NE3 227	250	1	3NE3 333	450	2
3RW34 65-0DC. 4	3NE1 230-0	315	1	2×70	3NE3 230-0B	315	1	3NE3 334-0B	500	2
3RW34 66-0DC. 4	3NE1 230-0	315	1	2×70	3NE3 231	350	1	3NE3 336	630	2
3RW34 67-0DC. 4	3NE1 332-0	400	2	2×95	3NE3 233	450	1	3NE3 340-8	900	2
3RW34 72-0DC. 4	3NE1 435-0	560	3	2×150	3NE3 336	630	2	3NE3 340-8	900	2
3RW34 83-0DC. 4	3NE1 438-0	800	3	$2 \times(50 \times 5)^{4}$	3NE3 340-8	900	2	3NE3 340-8	900	2
3RW34 84-0DC. 4	2×3 NE1 435-0	2×560	3	2×150	2×3 NE3 336	2×630	2	2×3 SE3 340-8	2×900	2
3RW34 86-0DC.4 ${ }^{\text {2 }}$	2×3 NE1 437-1	2×710	3	$2 \times(40 \times 5)^{4}$	2×3 NE3 340-8	2×900		2×3 NE3 340-8	2×900	2

1) E.g. $3 \times I_{e}$ for 60 s .
2) E.g. $3 x I_{e}$ for 30 s .
3) The types of coordination are explained in more detail under Load Feeders > Fuseless Load Feeders.
4) No direct connection to busbars.

	Fuse design with 3NE1 SITOR fuses with full utilization ${ }^{\text {(}}$ of the soft starter (semiconductor and lead protection)				Fuse design with 3NE3 SITOR fuses with full utilization ${ }^{1)}$ of the soft starter, lowest possible protection, age-free (semiconductor protection)			Fuse design with 3NE3 SITOR fuses with full utilization ${ }^{1)}$ of the soft starter, highest possible protection, age-free (semiconductor protection)		
Soft starter	All-range fuse $\mathrm{F}^{\prime} \mathbf{1}$				Semiconductor fuse F3			Semiconductor fuse F3		
Type	Type	Rated current A	Size	Required conductor crosssection for each fuse mm^{2}	Type	Rated current A	Size	Type	Rated current A	Size
Type of coordination $2^{3)}$: $\mathrm{I}_{\mathrm{q}}=50 \mathrm{kA}$ at 575 V										
3RW34 54-0DC. 5	3NE1 022-2	125	00	50	3NE3 222	125	1	3NE3 225	200	1
3RW34 55-0DC. 5	3NE1 022-0	125	00	50	3NE3 224	160	1	3NE3 230-0B	315	1
3RW34 57-0DC. 5	3NE1 225-0	200	1	95	3NE3 225	200	1	3NE3 233	415	1
3RW34 58-0DC. ${ }^{2}$)	3NE1 225-0	200	1	95	3NE3 227	250	1	3NE3 333	450	2
3RW34 65-0DC. 5	3NE1 227-0	250	1	120	3NE3 230-0B	315	,	3NE3 334-0B	500	2
3RW34 66-0DC. 5	3NE1 230-0	315	1	2×70	3NE3 231	350	1	3NE3 336	630	2
3RW34 67-0DC. 5	3NE1 332-0	400	2	2×95	3NE3 233	450		3NE3 340-8	900	2
3RW34 72-0DC. 5	3NE1 435-2	560	3	2×150	3NE3 336	630	2	3NE3 340-8	900	2
3RW34 83-0DC. 5	3NE1 437-0	710	3	$2 \times(40 \times 5)^{4}$	3NE3 340-8	900	2	3NE3 340-8	900	2
3RW34 84-0DC. 5	2×3 NE1 435-0	2×560	3	2×150	2×3 NE3 336	2×630	2	2×3 NE3 340-8	2×900	2
3RW34 86-0DC.5 ${ }^{\text {2 }}$	2×3 NE1 437-2	2×710	3	$2 \times(40 \times 5)^{4}$	2×3 NE3 340-8	2×900		2×3 NE3 340-8	2×900	2

1) E.g. $3 x l_{\mathrm{e}}$ for 60 s .
2) E.g. $3 x I_{e}$ for 30 s .
3) The types of coordination are explained in more detail under Load Feeders > Fuseless Load Feeders.
4) No direct connection to busbars.

Note:
All selection data refer to inline circuits.
For selections for the inside-delta-circuit, please contact technical support.
Further information is available on the Internet at:
www.siemens.com/softstarter.

Selection and ordering data

Rated operating voltage U_{e}	At ambient temperature $40^{\circ} \mathrm{C}$				At ambient temperature $50^{\circ} \mathrm{C}$					$\begin{aligned} & \text { DT } \\ & \text { 5) } \end{aligned}$	Order No．	PS＊	Weight per PU approx
	Rated operat－ ing current Ie	Rated output of three－ phase motors for rated operating voltage U_{e}			Rated operat－ ing current I_{e}	Rated for rat	utput of opera	ree－pha g voltag	$\begin{aligned} & \text { e motors } \\ & U_{e} \end{aligned}$				
V	A	$\begin{aligned} & 230 \mathrm{~V} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 400 \mathrm{~V} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~V} \\ & \mathrm{~kW} \end{aligned}$	A	$\begin{aligned} & 200 \mathrm{~V} \\ & \mathrm{hp} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \\ & \mathrm{hp} \end{aligned}$	$\begin{aligned} & 460 \mathrm{~V} \\ & \mathrm{hp} \end{aligned}$	$\begin{aligned} & 575 \mathrm{~V} \\ & \mathrm{hp} \end{aligned}$				kg
Inline circuit													
$200 . . .460$	$\begin{aligned} & 57 \\ & 70 \\ & 110 \\ & 135 \end{aligned}$	$\begin{aligned} & 15 \\ & 18.5 \\ & 30 \\ & 37 \end{aligned}$	$\begin{aligned} & 30 \\ & 37 \\ & 55 \\ & 75 \end{aligned}$		$\begin{aligned} & 42 \\ & 57 \\ & 81 \\ & 110 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 60 \\ & 75 \end{aligned}$		$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	3RW34 54－0DC■4 3RW34 55－0DC口4 3RW34 57－0DC口4 3RW34 58－0DC 4	1 unit 1 unit 1 unit 1 unit	$\begin{array}{r} 8.460 \\ 10.000 \\ 9.900 \\ 9.870 \end{array}$
	$\begin{aligned} & \hline 162 \\ & 195 \\ & 235 \end{aligned}$	$\begin{aligned} & 45 \\ & 55 \\ & 75 \end{aligned}$	$\begin{aligned} & 90 \\ & 110 \\ & 132 \end{aligned}$	－	$\begin{aligned} & 135 \\ & 162 \\ & 195 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \\ & 150 \end{aligned}$		$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	3RW34 65－0DCD4 3RW34 66－0DC口4 3RW34 67－0DCD4	1 unit 1 unit 1 unit	$\begin{aligned} & 19.000 \\ & 19.100 \\ & 21.100 \end{aligned}$
	352	110	200	－	285	100	100	200	－	A	3RW34 72－0DC 44	1 unit	36.300
	$\begin{aligned} & \hline 500 \\ & 700 \\ & 1050 \end{aligned}$	$\begin{aligned} & 160 \\ & 200 \\ & 315 \end{aligned}$	$\begin{aligned} & 250 \\ & 400 \\ & 560 \end{aligned}$	－	$\begin{aligned} & 450 \\ & 608 \\ & 865 \end{aligned}$	$\begin{aligned} & 150 \\ & 200 \\ & 300 \end{aligned}$	$\begin{aligned} & 150 \\ & 250 \\ & 350 \end{aligned}$	$\begin{aligned} & 350 \\ & 500 \\ & 750 \end{aligned}$		$\begin{aligned} & \hline \text { A } \\ & \text { A } \\ & \text { D } \end{aligned}$	3RW34 83－0DCD4 3RW34 84－0DCD4 3RW34 86－0DC 4	1 unit 1 unit 1 unit	$\begin{aligned} & 59.600 \\ & 59.600 \\ & 95.100 \end{aligned}$
$400 \ldots 600$	57	－	30	37	42	－	－	30	40	C	3RW34 54－0DC口5	1 unit	8.600
	70	－	37	45	57	－	－	40	50	C	3RW34 55－0DC口5	1 unit	10.000
	110	－	55	75	81	－	－	60	75	C	3RW34 57－0DCD5	1 unit	9.480
	135	－	75	90	110	－	－	75	100	C	3RW34 58－0DC口5	1 unit	7.650
	162	－	90	110	135	－	－	100	125	C	3RW34 65－0DC口5	1 unit	15.000
	195	－	110	132	162	－	－	125	150	C	3RW34 66－0DC口5	1 unit	15.000
	235	－	132	160	195	－	－	150	200	C	3RW34 67－0DC口5	1 unit	21.100
	352	－	200	250	285	－	－	200	300	C	3RW34 72－0DC口5	1 unit	37.000
	500	－	250	355	450	－	－	350	450	C	3RW34 83－0DC口5	1 unit	59.600
	700	－	400	500	608	－	－	500	700	C	3RW34 84－0DC口5	1 unit	59.600
	1050	－	560	710	865	－	－	750	1000	D	3RW34 86－0DC口5	1 unit	95.100
Inside－delta circuit													
200 ．．． 400	$\begin{aligned} & 99 \\ & 121 \\ & 191 \\ & 234 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 37 \\ & 55 \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 110 \\ & 132 \\ & \hline \end{aligned}$	- - -	$\begin{aligned} & 73 \\ & 99 \\ & 140 \\ & 191 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \\ & 40 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 50 \\ & 60 \end{aligned}$	- - -		$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \hline \end{aligned}$	3RW34 54－0DC $\square 4$ 3RW34 55－0DC 3RW34 57－0DCD4 3RW34 58－0DCD4	1 unit 1 unit 1 unit 1 unit	$\begin{array}{r}8.460 \\ 10.000 \\ 9.900 \\ 9.870 \\ \hline\end{array}$
	$\begin{aligned} & 281 \\ & 338 \\ & 407 \end{aligned}$	$\begin{aligned} & 90 \\ & 110 \\ & 132 \end{aligned}$	$\begin{aligned} & 160 \\ & 200 \\ & 250 \end{aligned}$	－	$\begin{aligned} & 234 \\ & 281 \\ & 338 \end{aligned}$	$\begin{aligned} & 75 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 100 \\ & 125 \end{aligned}$	－	－	A	3RW34 65－0DCD4 3RW34 66－0DCD4 3RW34 67－ODC 4	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 19.000 \\ & 19.100 \\ & 21.100 \end{aligned}$
	610	200	355	－	494	150	200	－	－	A	3RW34 72－0DC口4	1 unit	36.300
	$\begin{aligned} & \hline 866 \\ & 1212 \\ & 1819 \end{aligned}$	$\begin{aligned} & 250 \\ & 400 \\ & 560 \end{aligned}$	$\begin{aligned} & 500 \\ & 710 \\ & 1000 \end{aligned}$	－	$\begin{aligned} & \hline 779 \\ & 1053 \\ & 1498 \end{aligned}$	$\begin{aligned} & 250 \\ & 350 \\ & 600 \end{aligned}$	$\begin{aligned} & 300 \\ & 450 \\ & 650 \end{aligned}$	－	－	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { D } \end{aligned}$	3RW34 83－0DCD4 3RW34 84－0DCD4 3RW34 86－0DCD4	1 unit 1 unit 1 unit	$\begin{aligned} & 59.600 \\ & 59.600 \\ & 95.100 \end{aligned}$
400 ．．． 600	$\begin{aligned} & \hline 99 \\ & 121 \\ & 191 \\ & 234 \end{aligned}$		$\begin{aligned} & \hline 55 \\ & 55 \\ & 110 \\ & 132 \end{aligned}$	$\begin{aligned} & 55 \\ & 75 \\ & 132 \\ & 160 \end{aligned}$	$\begin{aligned} & 73 \\ & 99 \\ & 140 \\ & 191 \end{aligned}$	- - -		$\begin{aligned} & 50 \\ & 75 \\ & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 100 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	3RW34 54－0DC 5 3RW34 55－0DC口5 3RW34 57－0DC 5 3RW34 58－0DCD5	1 unit 1 unit 1 unit 1 unit	$\begin{array}{r} 8.600 \\ 10.000 \\ 9.480 \\ 7.650 \end{array}$
	$\begin{aligned} & 281 \\ & 338 \\ & 407 \end{aligned}$		$\begin{aligned} & 160 \\ & 200 \\ & 250 \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \\ & 315 \end{aligned}$	$\begin{aligned} & 234 \\ & 281 \\ & 338 \end{aligned}$	－	－	$\begin{aligned} & 200 \\ & 200 \\ & 250 \end{aligned}$	$\begin{aligned} & 250 \\ & 300 \\ & 350 \end{aligned}$	C	3RW34 65－0DCD5 3RW34 66－0DCD5 3RW34 67－ODCD5	1 unit 1 unit 1 unit	$\begin{aligned} & 15.000 \\ & 15.000 \\ & 21.100 \end{aligned}$
	610	－	355	400	494	－	－	400	500	C	3RW34 72－0DC口5	1 unit	37.000
	$\begin{aligned} & \hline 866 \\ & 1212 \\ & 1819 \end{aligned}$		$\begin{aligned} & 500 \\ & 710 \\ & 1000 \end{aligned}$	$\begin{aligned} & 630 \\ & 800 \\ & 1200 \end{aligned}$	$\begin{aligned} & 779 \\ & 1053 \\ & 1498 \end{aligned}$	－	－	$\begin{aligned} & 700 \\ & 950 \\ & 1300 \end{aligned}$	$\begin{aligned} & \hline 850 \\ & 1200 \\ & 1700 \end{aligned}$	C	3RW34 83－0DCD5 3RW34 84－0DCD5 3RW34 86－0DCD5	1 unit 1 unit 1 unit	$\begin{aligned} & 59.600 \\ & 59.600 \\ & 95.100 \end{aligned}$

Order No．extension for rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$
DC $24 \mathrm{~V}^{2)}$
AC $\left.115 \mathrm{~V}^{3}\right)^{4}$
AC 230 V

1）In the selection table，the unit rated operating current refers to the motor＇s rated operating current in the inside－delta circuit．
The actual current of the unit is approx． 58% of this value．
2）SIKOSTART 3RW34 86－0DC．．：not available as DC 24 V design．
3）SIKOSTART 3RW34 57－0DC．．and 3RW34 86－0DC．．： not available as DC 115 V design．
4）The specified hp values apply to 50 Hz networks．In conjunction with 60 Hz networks，in the AC 115 V design，a higher motor hp is possible． Relevant values on request．
5）The delivery times apply to AC 230 V soft starters．Delivery times for the remaining designs on request．

Soft starter selection depends on the motor＇s rated current The 3RW34 solid－state starters are designed for normal starting． In the event of deviating conditions or increased switching fre－ quency，it may be necessary to choose a larger unit．Siemens recommends the use of the selection and simulation program Win－SIKOSTART．See technical specifications for information about rated currents for ambient temperatures $>40^{\circ} \mathrm{C}$ ．

Accessories

Spare parts

SIRIUS/SIKOSTART Soft Starters

For Standard Applications

SIKOSTART soft starters

Circuit diagrams

Connection examples for main and control circuits

Main circuit

Possibility 2: inside-delta circuit

Phase switching
for inside-delta circuit

Control circuit
Possibility 1: control via pushbutton

Control circuit

Control circuit

Possibility 3: control via switch plus bypass contactor

[^1]
Main circuit

Possibility 3: inline circuit with bypass contactor

SIRIUS/SIKOSTART Soft Starters For Standard Applications

SIKOSTART soft starters

Further information

Configuration

The 3RW34 solid-state starters are designed for normal starting. In the event of deviating conditions or increased switching frequency, it may be necessary to choose a larger unit. For accurate dimensioning, use the Win-SIKOSTART selection and simulation program.
If necessary, an overload relay for heavy-starting must be selected where long starting times are involved. PTC thermistor detectors are recommended. This also applies to soft running down. In this case an additional current load is effective compared with a free ramp-down.
In the motor feeder between the SIKOSTART and the motor, no capacitive elements are permitted (e.g. no compensation equipment).
All elements of the main circuit (such as fuses, switching devices and overload relays) should be dimensioned for direct starting, following the local short-circuit conditions. Fuses, switching devices and overload relays must be ordered separately.

Circuit concept

The SIKOSTART 3RW34 can be operated in two different types of circuit.

- Inline circuit

The switching devices for isolating and protecting the motor are simply connected in series with the soft starter. The motor is connected to the soft starter with three leads.

- Inside-delta circuit

The wiring is similar to that of star-delta starters. The phases of the soft starter are connected in series with the individual motor windings. The soft starter then only has to carry the phase current, amounting to about 58% of the rated current of the motor (conductor current).

Comparison of the types of circuit

Inline circuit:
Rated current I_{e} corresponds to the rated motor current I_{n}, 3 conductors to motor

Inside-delta circuit:
Rated current I_{e} corresponds to approx. 58% of the rated motor current I_{n},
6 conductors to motor (as star delta starters)

Which circuit?

Using the inline circuit involves the lowest wiring complexity, which is twice as high when using the inside-delta circuit. If the soft starter to motor connections are short, this contact sequence is preferable.
Thanks to the possibility of switching between the inline circuit and inside-delta circuit, the most favorable solution can always be chosen.

Settings

DIP switches (SW1):
This switch is located on the main logic module. It is used for setting the soft starter software to the relevant application.
1)SW1-1: causes an OFF delay on the soft starter. The OFF delay is required when using a parallel contactor (bridging contactor). It initially enables the contactor to be deenergized, after which the soft starter switches 1.0 s later. This prevents damage to the thyristors from voltage peaks which arise when the bridging contactor interrupts the motor current.
2)SW1-2: Sets an ON delay signal for the soft starter. This function makes it possible for a contactor disconnector first to be switched on in the currentless state, with the soft starter then being switched 1.0 s later. This has the effect of increasing the life of the contacts of the contactor disconnector.
3)SW1-3: Sets the soft starter software for operation with thyristors in the inline circuit or within the inside-delta circuit.
4)SW1-4: Sets the fault contact as an NO contact or NC contact. This contact can be used for controlling a fault contactor, a shunt release or a fault alarm.

SIRIUS/SIKOSTART Soft Starters

For Advanced Applications

SIKOSTART soft starters

Overview

SIKOSTART 3RW22

In addition to soft starting and soft ramp-down, the solid-state SIKOSTART 3RW22 soft starters provide numerous functions for higher-level requirements They cover a rating range of up to 710 kW (at 400 V).

Combinations of various starting, operating and ramp-down possibilities ensure an optimum adaptation to the applicationspecific requirements. Operation and commissioning can be carried out either conventionally with switches and potentiometers or conveniently using a commercial PC and an RS232 interface.

Applicable standards

- IEC 60947-4-2
- UL/CSA for 3RW22 21 to 3RW22 31

Area of application

The SIKOSTART 3RW22 solid-state soft starters are suitable for the controlled soft starting and ramp-down, for the braking and the energy-saving operation of three-phase induction motors.

Applications

- Pumps, compressors
- Fans, blowers
- Conveyors
- Breakers, mills
- Agitators
- Sanding machines
- Wire drawing/textile machines
- Presses
- Machine tools

Functions

- Soft starting with breakaway pulse, voltage ramp, voltage or current limiting as well as any combination of these, depending on load type
- Varied setting facilities for the starting parameters as starting voltage, ramp time etc.
- Start-up detection
- Energy saving mode
- Four running-down modes selectable: free ramp-down, pump stopping, soft stop, DC braking
- Electronic overload protection
- Protection against temperature rise
- Parameters can be set via a potentiometer and sliding-dolly switch or using the PC program COM SIKOSTART
- Interface for communication with the PC for more accurate setting of the parameters as well as for control and monitoring
- Simple adaptation to the motor feeder
- Simple mounting and commissioning
- Display of 5 operating states and 5 fault signals
- System voltages from 200 V to 1000 V, $50 / 60 \mathrm{~Hz}$
- Integrated power supply unit for three control supply voltages
- Applicable up to $55^{\circ} \mathrm{C}$
- Higher load ratings by selecting low ambient temperatures.

SIRIUS/SIKOSTART Soft Starters For Advanced Applications

Technical specifications

Control electronics			
Rated control supply voltage (term	inal 12-15)	V	380 ... 415, 200 ... 240, $100 \ldots 120$ (+10\%/-15 \%)
Rated frequency		Hz	50/60, operating range $45 \ldots 66$
Rated control supply current	at $380 \mathrm{~V} \ldots .415 \mathrm{~V}$ at 200 V ... 240 V at 100 V ... 120 V	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	approx. 40 approx. 75 approx. 100
Short-circuit protection, control circuit			built-in fuse 250 mA slow, $6.3 \mathrm{~mm} \times 32 \mathrm{~mm}$
Operating times	ON-delay ON-delay ON-delay Recovery time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~ms} \end{aligned}$	≤ 50 controlled separately when the control supply voltage is applied and voltage is present in the control circuit ≤ 1 contactor operation, ON/OFF by switching the control supply voltage ≤ 1.1 automatic mode ≤ 440 after DC braking
Power failure			
Bridging time	control supply voltage	ms	≤ 80
Response time	load current circuit	ms	≤ 100
Operating indications (continuous light)	LED 1 LED 2 LED 3 LED 4 LED 5		Ready starting or slowing down starting ended energy save mode active braking
Fault indications (flashing light)	$\begin{aligned} & \text { LED } 1 \\ & \\ & \text { LED } 2 \\ & \text { LED } 3 \\ & \text { LED } 4 \\ & \text { LED } 5 \end{aligned}$		Mains fault (phase failure, missing voltage/load, control supply voltage too low) Thyristor defective (one or several thyristor(s) alloyed) Excess temperature or overload deactivation Unit malfunction Unit gets too hot; new starting is inhibited; however, unit continues to operate
Control inputs on versions with serial interface, the input assignments are dependent on the number of parameter sets selected via the COM-SIKOSTART PC communication program (up to 3 parameter sets can be selected)	- Standard application: with one motor Input 1 Input 2 Input 3		ON OFF Reset
	- Serial starting of several motors or of reversible pole motors		
	Input 1		ON/OFF parameter set 1
	Input 2		ON/OFF parameter set 2
	Input 3		Reset or ON/OFF parameter set 3
	Rated operating current	mA	approx. 10 according to DIN 19240
	Rated voltage	V	DC 24 V from built-in power supply unit via DC +24 V terminal
Relay outputs	Output 1 Output 2 Output 3		Group fault signal (changeover contact) Starting terminated; motor connected to full mains voltage (NO contact) DC brakes active; for control of the braking contactor (NO contact)
	Rated operating current	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { 3 AC-15/AC-14 at } 240 \mathrm{~V} \\ & 0.1 \mathrm{DC}-13 \text { at } 240 \mathrm{~V} \\ & 0.5 \mathrm{DC}-13 \text { at } 24 \mathrm{~V} \end{aligned}$
	Short-circuit protection		4 A utilization category gL/gG; 6 A fast (fuse is not included in scope of supply)
Max. conductor cross-sections	- Solid - Finely stranded with end sleeve - Tightening torque	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{Nm} \end{aligned}$	$\begin{array}{lll} 0.5 & \ldots & 2.5 \\ 0.5 & \ldots & 1.5 \\ 0.8 & \ldots & 1.4 \end{array}$

SIRIUS/SIKOSTART Soft Starters

For Advanced Applications

SIKOSTART soft starters

Power electronics			
Continuous operation (\% of l_{e})		\%	115
Max. starting time			
- cold ($40^{\circ} \mathrm{C}$ or $55^{\circ} \mathrm{C}$)/warm	Starting current		
	$600 \% / e$	s	2/1
	450 \% $l_{\text {e }}$	s	10/5
	$300 \% l_{\text {e }}$	s	60/30
	$250 \% l_{e}$	s	120/60
	$200 \% l_{e}$	s	200/100
Minimum load ${ }^{1)}$ (\% of l_{e})		\%	20
Permissible ambient temperature - in operation - when stored		$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0 \ldots+40 \text { or }+55 \text { (switchable) } \\ & -25 \ldots+80 \end{aligned}$
Operating range			
	- Rated operating voltage	V	$200(-15 \%) . . .500(+10 \%)$ for 3RW22 ..-ODB15,
		V	$200(-15 \%) \ldots 415(+10 \%)$ for 3RW22 ..-0DB14,
		V	$500(-15 \%) . . .690(+10 \%)$ for 3RW22 ...-ODB16,
		V	1000 (-20 \%; +25 \%) for 3RW22 ..-ODB18
	- Frequency	Hz	$45 \ldots 66$... 6
Degree of protection acc. to IEC 60947-1/IEC 60529	$\begin{aligned} & \text { RW22 } 21 \ldots \text { RW22 } 31 \\ & \text { RW22 } 34 \ldots \text { RW22 } 50 \end{aligned}$		$\begin{aligned} & \text { IP20 } \\ & \text { IP00 } \\ & \hline \end{aligned}$
Overload protection			Thermal sensor on the heatsink, solid-state protection with thermal image
Permissible installation altitude			up to 3000 m above sea level; over 1000 m above sea level linear reduction of I_{e}, thus at 2000 m above sea level $0.87 \times \mathrm{I}_{\mathrm{e}}$ and at 3000 m above sea level 0.77×1 e
Fans			
	- Rated control supply voltage - Frequency	$\begin{aligned} & V \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 \pm 10 \% \\ & 45 \ldots 66 \end{aligned}$
Maximum conductor length betwee	en soft starter and motor	m	$200^{2)}$

1) The rated motor current (specified on the motor's rating plate) should amount to at least 20% of the SIKOSTART unit's rated current I_{e}.
2) If this value is exceeded, problems with line capacities may arise, which can result in false firing.

Power electronics			3RW22 21-1AB15	3RW22 23-1AB15	3RW22 25-1AB15	3RW22 26-1AB15
Type (200 ... 500 V)						
Load rating						
Rated operating current $I_{\text {e }}$ Motor output (400 V) approx.	at $40 / 55^{\circ} \mathrm{C}, \mathrm{AC}-3$ at $40 / 55^{\circ} \mathrm{C}, \mathrm{AC}-3$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 7 / 5.5 \\ & 3 / 2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 / 9 \\ & 4 / 4 \end{aligned}$	$\begin{aligned} & 22 / 16 \\ & 11 / 7.5 \end{aligned}$	$\begin{aligned} & 28 / 22 \\ & 15 / 11 \end{aligned}$
Permissible starts per hour for intermittent duty $\mathrm{S} 4, T_{\mathrm{u}}=40^{\circ} \mathrm{C}$ ON-period = 30%	$\begin{aligned} & 350 \% \times I_{e} \text { for } 5 \mathrm{~s} \\ & 300 \% \times I_{e} \text { for } 10 \mathrm{~s} \\ & 250 \% \times I_{\mathrm{e}} \text { for } 15 \mathrm{~s} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$
Power loss at rated operating current ($40^{\circ} \mathrm{C}$) approx.		W	30	40	70	80
Max. conductor cross-sections	- Solid - Finely stranded without end sleeve - Finely stranded with end sleeve - Stranded	mm^{2} mm^{2} mm^{2} mm^{2}	$\begin{aligned} & 1 \ldots 16 \\ & 2.5 \ldots 16 \\ & 1 \ldots 16 \\ & 2.5 \ldots 25 \end{aligned}$	$\begin{aligned} & 1 \ldots 16 \\ & 2.5 \ldots 16 \\ & 1 \ldots 16 \\ & 2.5 \ldots 25 \end{aligned}$	$\begin{aligned} & 1 \ldots 16 \\ & 2.5 \ldots 16 \\ & 1 \ldots 16 \\ & 2.5 \ldots 25 \end{aligned}$	$\begin{aligned} & 1 \ldots 16 \\ & 2.5 \ldots 16 \\ & 1 \ldots 16 \\ & 2.5 \ldots 25 \end{aligned}$
Bridging contactor for AC-1(if required, as a main contactor to AC-3)			$\begin{aligned} & \hline \text { 3RT10 } 15 \\ & \text { 3RT10 } 16 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 15 \\ & \text { 3RT10 } 17 \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 24 \\ & \text { 3RT10 } 26 \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 24 \\ & \text { 3RT10 } 34 \end{aligned}$
Recommended braking contactor			3RT15 1.	3RT15 26	3RT15 26	3RT15 26
Type (200 ... 500 V)			3RW22 27-1AB15	3RW22 28-1AB15	3RW22 30-1AB15	3RW22 31-1AB15
Load rating						
Rated operating current I_{e} Motor output (400 V)	at $40 / 55^{\circ} \mathrm{C}, \mathrm{AC}-3$ at $40 / 55^{\circ} \mathrm{C}, \mathrm{AC}-3$	$\begin{aligned} & \text { A } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 35 / 32 \\ & 18.5 / 15 \end{aligned}$	$\begin{aligned} & \text { 45/37 } \\ & 22 / 18.5 \end{aligned}$	$\begin{aligned} & 50 / 45 \\ & 25 / 22 \end{aligned}$	$\begin{aligned} & 70 / 63 \\ & 37 / 30 \end{aligned}$
Permissible starts per hour for intermittent duty $\mathrm{S} 4, T_{\mathrm{u}}=40^{\circ} \mathrm{C}$ ON-period = 30%	$\begin{aligned} & 350 \% \times I_{\mathrm{e}} \text { for } 5 \mathrm{~s} \\ & 300 \% \times I_{\mathrm{e}} \text { for } 10 \mathrm{~s} \\ & 250 \% \times I_{\mathrm{e}} \text { for } 15 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 30 \end{aligned}$
Power loss at rated operating current ($40{ }^{\circ} \mathrm{C}$) approx.		W	105	130	140	220
Max. conductor cross-sections	- Solid - Finely stranded without end sleeve - Finely stranded with end sleeve - Stranded	mm^{2} mm^{2} mm^{2} mm^{2}	$\begin{aligned} & \hline 1 / 16 \\ & 2.5 \ldots 16 \\ & 1 / 16 \\ & 2.5 / 25 \end{aligned}$	$\begin{aligned} & \hline 1 / 16 \\ & 2.5 \ldots 16 \\ & 1 / 16 \\ & 2.5 / 25 \end{aligned}$	$\begin{aligned} & \hline 1 / 16 \\ & 2.5 \ldots 16 \\ & 1 / 16 \\ & 2.5 / 25 \end{aligned}$	$\begin{aligned} & \hline 1 / 16 \\ & 2.5 \ldots 16 \\ & 1 / 16 \\ & 2.5 / 25 \end{aligned}$
Bridging contactor for AC-1(if required, as a main contactor to AC-3)			$\begin{aligned} & \text { 3RT10 } 24 \\ & \text { 3RT10 } 35 \end{aligned}$	$\begin{aligned} & \hline \text { 3RT10 } 34 \\ & \text { 3RT10 } 36 \\ & \hline \end{aligned}$	3RT10 35 3RT10 44	3RT10 44 3RT10 45
Recommended braking contactor			3RT15 26	3RT15 26	3RT15 35	3RT15 35

SIRIUS/SIKOSTART Soft Starters For Advanced Applications

SIKOSTART soft starters

Power electronics		3RW22 34-0DB15	3RW22 35-0DB15	3RW22 36-0DB15	3RW22 38-0DB15
Type (200 ... 500 V)					
Load rating					
Rated operating current I_{e} at $40 / 55^{\circ} \mathrm{C}, ~ \mathrm{AC}-3$ Motor output $(400 \mathrm{~V})$ at $40 / 55^{\circ} \mathrm{C}, \mathrm{AC}-3$	$\begin{aligned} & \text { A } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 100 / 85 \\ & 55 / 45 \end{aligned}$	$\begin{aligned} & \text { 135/110 } \\ & 75 / 55 \end{aligned}$	$\begin{aligned} & \text { 160/140 } \\ & 90 / 75 \end{aligned}$	$\begin{aligned} & 235 / 205 \\ & 132 / 110 \end{aligned}$
Permissible starts per hour $350 \% \times I_{e}$ for 5 s for intermittent duty $S 4, T_{u}=40^{\circ} \mathrm{C}$, $300 \% \times I_{\mathrm{e}}$ for 10 s ON-period $=30 \%$ $250 \% \times I_{\mathrm{e}}$ for 15 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 120 \\ & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 100 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \\ & 50 \end{aligned}$
Power loss at rated operating current ($40^{\circ} \mathrm{C}$) approx.	W	260	370	435	640
Fans Number Ratings	W	$\begin{aligned} & \hline 1 \\ & 18 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 18 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 18 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 18 \end{aligned}$
Max. conductor cross-sections Stranded	mm^{2}	95	120	150	240
Bridging contactor for AC-1 (if required, as a main contactor to AC-3)		$\begin{aligned} & \text { 3RT10 } 45 \\ & \text { 3RT10 } 54 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT14 } 46 \\ & \text { 3RT10 } 55 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT14 } 56 \\ & \text { 3RT10 } 56 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT14 } 56 \\ & \text { 3RT10 } 65 \\ & \hline \end{aligned}$
Recommended braking contactor combination (opening + closing contactor)		$\begin{aligned} & \text { 3RT10 } 34+ \\ & \text { 3RT10 } 34 \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 35+ \\ & \text { 3RT10 } 44 \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 44 \text { + } \\ & \text { 3RT10 } 44 \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 44+ \\ & \text { 3RT10 } 46 \end{aligned}$

Type (200 ... 500 V)			3RW22 40-0DB15	3RW22 41-0DB15	3RW22 42-0DB15
Load rating					
Rated operating current I_{e} Motor output (400 V)	at $40 / 55^{\circ} \mathrm{C}, \mathrm{AC}-3$ at $40 / 55^{\circ} \mathrm{C}, \mathrm{AC}-3$	$\begin{aligned} & \text { A } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 300 / 250 \\ & 160 / 132 \end{aligned}$	$\begin{aligned} & 355 / 300 \\ & 200 / 160 \end{aligned}$	$\begin{aligned} & \text { 430/355 } \\ & 250 / 200 \end{aligned}$
Permissible starts per hour for intermittent duty $\mathrm{S} 4, T_{\mathrm{u}}=40^{\circ} \mathrm{C}$, ON-period = 30 \%	$\begin{aligned} & 350 \% \times I_{e} \text { for } 5 \mathrm{~s} \\ & 300 \% \times I_{e} \text { for } 10 \mathrm{~s} \\ & 250 \% \times I_{\mathrm{e}} \text { for } 15 \mathrm{~s} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 180 \\ & 100 \\ & 70 \\ & \hline \end{aligned}$
Power loss at rated operating current ($40^{\circ} \mathrm{C}$) approx.		W	810	970	1560
Fans	Number Ratings	W	$\begin{aligned} & 2 \\ & 36 \end{aligned}$	$\begin{aligned} & 2 \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 54 \\ & \hline \end{aligned}$
Max. conductor cross-sections	Stranded Connecting bar	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm} \end{aligned}$	240	240	40×10
Bridging contactor for AC-1(if required, as a main contactor to AC-3)			3RT14 56 3RT10 66	$\begin{aligned} & \text { 3RT14 } 66 \\ & \text { 3RT10 } 75 \end{aligned}$	3RT14 76 3RT14 76
Recommended braking contactor combination (opening + closing contactor)			$\begin{aligned} & \text { 3RT10 } 54+ \\ & \text { 3RT10 } 55 \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 56 \text { + } \\ & \text { 3RT10 } 65 \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 56+ \\ & \text { 3RT10 } 65 \end{aligned}$

Type (200 ... 500 V)			3RW22 43-0DB15	3RW22 45-0DB15	3RW22 47-0DB15	3RW22 50-0DB15
Load rating						
Rated operating current $/ \mathrm{e}$ Motor output (400 V)	at $40 / 55^{\circ} \mathrm{C}, \mathrm{AC}-3$ at $40 / 55^{\circ} \mathrm{C}, \mathrm{AC}-3$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 560 / 450 \\ & 315 / 250 \end{aligned}$	$\begin{aligned} & 700 / 500 \\ & 400 / 315 \end{aligned}$	$\begin{aligned} & 865 / 700 \\ & 500 / 400 \end{aligned}$	$\begin{aligned} & 1200 / 1000 \\ & 710 / 560 \\ & \hline \end{aligned}$
Permissible starts per hour for intermittent duty $\mathrm{S} 4, T_{\mathrm{u}}=40^{\circ} \mathrm{C}$, individual mounting, ON-period = 30%	$350 \% \times I_{e}$ for 5 s $300 \% \times l_{\mathrm{e}}$ for 10 s $250 \% \times l_{\mathrm{e}}$ for 15 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & \hline 120 \\ & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \\ & 40 \end{aligned}$
Power loss at rated operating current ($40^{\circ} \mathrm{C}$) approx.		W	1950	2060	2440	3550
Fans	Number Ratings	W	$\begin{aligned} & 3 \\ & 135 \end{aligned}$	$\begin{aligned} & 3 \\ & 135 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 78 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 78 \end{aligned}$
Max. conductor cross-sections ${ }^{1)}$	Connecting bar	mm	40×10		50×20	60×20
Bridging contactor (if required, also suitable for occasio $\left.l_{\mathrm{a}} \leq 6 \times l_{\mathrm{e}}\right)$	for AC-1 nal direct start at		$\begin{aligned} & \text { 3RT14 } 76 \\ & \text { 3TF68 } \end{aligned}$	$\begin{aligned} & \text { 3TF68 } \\ & \text { 3TF68 } \end{aligned}$	$\begin{aligned} & \text { 3TF69 } \\ & \text { 3TF69 } \end{aligned}$	$\begin{aligned} & 2 \times 3 \text { 3TF68 } \\ & 2 \times 3 T F 68^{2)} \end{aligned}$
Recommended braking contactor (opening + closing contactor)			$\begin{aligned} & \text { 3RT10 } 65 \text { + } \\ & \text { 3RT10 } 66 \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 65 \text { + } \\ & \text { 3RT10 } 75 \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 75+ \\ & \text { 3RT10 } 76 \end{aligned}$	$\begin{aligned} & \text { 3RT14 } 76+ \\ & \text { 3TF68 } \end{aligned}$

1) Due to thermal expansion of the bars, flexible links must be used for connecting the busbars.
2) Suitable as emergency contactor in occasional starts with $I_{a} \leq 6 \times I_{e}$.

SIRIUS/SIKOSTART Soft Starters

For Advanced Applications

SIKOSTART soft starters

Power electronics						
Type (500 ... 690 V)			3RW22 36-0DB16	3RW22 38-0DB16	3RW22 40-0DB16	3RW22 42-0DB16
Load rating						
Rated operating current I_{e} Motor output (690 V)	at $40 / 55^{\circ} \mathrm{C}, \mathrm{AC}-3$ at $40 / 55^{\circ} \mathrm{C}, \mathrm{AC}-3$	$\begin{aligned} & \text { A } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 160 / 140 \\ & 160 / 132 \end{aligned}$	$\begin{aligned} & 235 / 205 \\ & 250 / 200 \end{aligned}$	$\begin{aligned} & 300 / 250 \\ & 315 / 250 \end{aligned}$	$\begin{aligned} & 450 / 355 \\ & 450 / 355 \end{aligned}$
Permissible starts per hour Intermittent duty S4, $T_{\mathrm{u}}=40^{\circ} \mathrm{C}$ ON-period = 30 \%	$350 \% \times I_{\text {e }}$ for 5 s $300 \% \times I_{\mathrm{e}}$ for 10 s $250 \% \times I_{\mathrm{e}}$ for 15 s	$\begin{aligned} & \hline 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 180 \\ & 100 \\ & 70 \end{aligned}$
Short-circuit protection	SITOR Fuse links	$\begin{aligned} & \hline \text { A } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \hline 500 \\ & \text { 3NE3 334-OB } \end{aligned}$	$\begin{aligned} & \hline 630 \\ & \text { 3NE3 } 336 \end{aligned}$	$\begin{aligned} & 2 \times 500 \\ & 2 \times 3 \text { NE3 334-OB } \end{aligned}$	$\begin{aligned} & 2 \times 560 \\ & 2 \times 3 \text { NE3 } 335 \end{aligned}$
	Fuse switch disconnector Switch disconnector for fuses	Type Type	$\begin{aligned} & \text { 3NP44 } 7 \\ & \text { 3NP54 } \\ & \text { (3NP44 76) } \\ & \text { 3KL61 } \\ & \text { 3KM57 } \end{aligned}$	3NP44 7 3NP54 (3NP44 76) 3KL61 3KM57	$\begin{aligned} & 2 \times 3 N P 447 \\ & 2 \times 3 N P 54 \\ & (2 \times 3 N P 4476) \\ & 2 \times 3 \text { KL61 } \\ & 2 \times 3 \text { KM57 } \end{aligned}$	$\begin{aligned} & 2 \times 3 N P 447 \\ & 2 \times 3 N P 54 \\ & (2 \times 3 N P 4476) \\ & 2 \times 3 \text { KL61 } \\ & 2 \times 3 \text { KM5 } 57 \end{aligned}$
Power loss at rated operating current ($40^{\circ} \mathrm{C}$) approx.		W	490	700	810	1550
Fans	Number Ratings	W	$\begin{aligned} & \hline 1 \\ & 18 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 18 \end{aligned}$	$\begin{aligned} & 2 \\ & 36 \end{aligned}$	$\begin{aligned} & 3 \\ & 54 \end{aligned}$
Max. conductor cross-sections ${ }^{1)}$	Stranded Connecting bar	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm} \end{aligned}$	150	240	240	40×10
Bridging contactor	for AC-1		3RT14 56	3RT10 56	3RT14 56	3RT10 75
Recommended braking contactor combination (opening + closing contactor)			$\begin{aligned} & \text { 3RT10 } 36+ \\ & \text { 3RT10 } 54 \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 44 \text { + } \\ & \text { 3RT10 } 46 \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 54+ \\ & \text { 3RT10 } 56 \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 56+ \\ & \text { 3RT10 } 65 \end{aligned}$

1) Due to thermal expansion of the bars, flexible links must be used for connecting the busbars.

Type (500 ... 690 V)			3RW22 43-0DB16	3RW22 47-0DB16	3RW22 50-0DB16
Load rating					
Rated operating current $/ \mathrm{e}$ Motor output (690 V)	at $40 / 55^{\circ} \mathrm{C}, \mathrm{AC}-3$ at $40 / 55^{\circ} \mathrm{C}, \mathrm{AC}-3$	$\begin{aligned} & \text { A } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 560 / 450 \\ & 560 / 450 \end{aligned}$	$\begin{aligned} & 865 / 700 \\ & 850 / 710 \end{aligned}$	$\begin{aligned} & 1200 / 1000 \\ & 1200 / 1000 \\ & \hline \end{aligned}$
Permissible starts per hour for intermittent duty $\mathrm{S} 4, T_{\mathrm{u}}=40^{\circ} \mathrm{C}$, ON-period = 30%	$350 \% \times l_{e}$ for 5 s $300 \% \times l_{\mathrm{e}}$ for 10 s $250 \% \times l_{e}$ for 15 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \\ & 40 \end{aligned}$
Short-circuit protection	SITOR Fuse links Fuse switch disconnector Switch disconnector for fuses	A Type Type Type	$\begin{aligned} & 2 \times 560 \\ & 2 \times 3 N E 3335 \\ & 2 \times 3 N P 447 \\ & 2 \times 3 N P 54 \\ & 2 \times(3 N P 4476) \\ & 2 \times 3 K L 61 \\ & 2 \times 3 \text { KM } 57 \end{aligned}$	$\begin{aligned} & 3 \times 800 \\ & 3 \times 3 N E 3338-8 \\ & 3 \times 3 N P 447 \\ & 3 \times 3 N P 54 \\ & 3 \times(3 N P 4476) \\ & 3 \times 3 K L 61 \\ & 3 \times 3 \text { KM57 } \end{aligned}$	$\begin{aligned} & 4 \times 800 \\ & 4 \times 3 N E 3338-8 \\ & 4 \times 3 N P 447 \\ & 4 \times 3 N P 54 \\ & 4 \times(3 N P 44 \\ & 4 \times 3 K L 61 \\ & 4 \times 3 \text { KM57 } \end{aligned}$
Power loss at rated operating current ($40^{\circ} \mathrm{C}$) approx.		W	1950	2660	3560
Fans	Number Ratings	W	$\begin{aligned} & 3 \\ & 135 \end{aligned}$	$\begin{aligned} & 3 \\ & 78 \end{aligned}$	$\begin{aligned} & 3 \\ & 78 \end{aligned}$
Max. conductor cross-sections ${ }^{1)}$	Connecting bar	mm	40×10	60×20	60×20
Bridging contactor	for AC-1		3RT14 76	3TF69	2×3 TF68 ${ }^{\text {2) }}$
Recommended braking contactor combination (opening + closing contactor)			$\begin{aligned} & \text { 3RT10 } 65+ \\ & \text { 3RT10 } 75 \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 75 \text { + } \\ & \text { 3RT10 } 76 \end{aligned}$	$\begin{aligned} & \text { 3RT14 } 76+ \\ & \text { 3TF68 } \end{aligned}$

1) Due to thermal expansion of the bars, flexible links must be used for connecting the busbars.

Type (1000 V)			3RW22 36-0DB18	3RW22 40-0DB18	3RW22 42-0DB18
Load rating					
Rated operating current $/$ e Motor output (1000 V)	at $40 / 55^{\circ} \mathrm{C}, \mathrm{AC}-3$ at $40 / 55^{\circ} \mathrm{C}, \mathrm{AC}-3$	$\begin{aligned} & \text { A } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 160 / 140 \\ & 200 / 160 \end{aligned}$	$\begin{aligned} & 300 / 250 \\ & 400 / 315 \end{aligned}$	$\begin{aligned} & \text { 450/355 } \\ & 630 / 450 \end{aligned}$
Permissible starts per hour for intermittent duty $\mathrm{S} 4, T_{\mathrm{u}}=40^{\circ} \mathrm{C}$, ON-period = 30 \%	$\begin{aligned} & 350 \% \times I_{e} \text { for } 5 \mathrm{~s} \\ & 300 \% \times I_{\mathrm{e}} \text { for } 10 \mathrm{~s} \\ & 250 \% \times I_{\mathrm{e}} \text { for } 15 \mathrm{~s} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \hline 120 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 70 \\ & 70 \\ & \hline \end{aligned}$
Short-circuit protection	SITOR Fuse links	$\begin{aligned} & \hline \text { A } \\ & \text { Type } \end{aligned}$	3NE3230-OB	3NE3335	2×3 NE3233
Power loss at rated operating current ($40^{\circ} \mathrm{C}$) approx.		W	550	1100	1190
Fans	Number Ratings	W	$\begin{aligned} & \hline 1 \\ & 36 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 54 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 135 \end{aligned}$
Max. conductor cross-sections ${ }^{1)}$	Connecting bar	mm	150	40×10	40×10
Bridging contactor	for AC-1 for AC-3		$\begin{aligned} & \text { 3RT10 } 65 \\ & \text { 3RT10 } 75 \end{aligned}$	$\begin{aligned} & \text { 3TF68 } \\ & \text { 3TF68 } \end{aligned}$	$\begin{aligned} & \text { 3TF68 } \\ & \text { 3TF68 } \end{aligned}$

[^2]| $\begin{aligned} & \text { SIKOSTART } \\ & \left(T_{u}=40^{\circ} \mathrm{C}\right) \\ & (200 \ldots 500 \mathrm{~V}) \end{aligned}$ | Rated current IN of motor at 400 V
 A | Rated output P_{N} of motor at 400 V
 kW | Protection for full utilization of the SIKOSTART parameters e.g. starting current $3 \times 1 \mathrm{l}$ for 60 s | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | SITOR fuse (operational class gR) | Rated current | Conductor protection per fuse ${ }^{1)}$ for Cu cable | 3NP fuse switch disconnector | Switch disconnectors for fuses 3KL, 3KM |
| | | | Quantity per phase/type | A | $\geq \mathrm{mm}^{2}$ | | |
| 3RW22 21-1AB15 | 6.8 | 3 | 1×3 NE1 814-0 | 20 | 2.5 | 3NP35, 3NP50, 3NP40 1, 3NP40 7 | 3KL50 30, 3KM50 30 |
| 3RW22 23-1AB15 ${ }^{\text {2 }}$ | 11.4 | 5.5 | 1×3 NE1 815-0 | 25 | 4 | 3NP35, 3NP50, 3NP40 1, 3NP40 7 | 3KL50 30, 3KM50 30 |
| 3RW22 25-1AB15 | 21.4 | 11 | 1×3 NE1 817-0 | 50 | 10 | 3NP35, 3NP50, 3NP40 1, 3NP40 7 | 3KL50 30, 3KM50 30 |
| 3RW22 26-1AB15 | 28.5 | 15 | 1×3 NE1 818-0 | 63 | 16 | 3NP35, 3NP50, 3NP40 1, 3NP40 7 | 3KL50 30, 3KM50 30 |
| 3RW22 27-1AB15 | 35 | 18.5 | 1×3 NE1 820-0 | 80 | 25 | 3NP35, 3NP50, 3NP40 1, 3NP40 7 | 3KL52 30, 3KM52 30 |
| 3RW22 28-1AB15 | 41 | 22 | 1×3 NE1 820-0 | 80 | 25 | 3NP35, 3NP50, 3NP40 1, 3NP40 7 | 3KL52 30, 3KM52 30 |
| 3RW22 30-1AB15 ${ }^{2}$) | 55 | 30 | 1×3 NE1 820-0 | 80 | 25 | 3NP35, 3NP50, 3NP40 1, 3NP40 7 | 3KL52 30, 3KM52 30 |
| 3RW22 31-1AB15 ${ }^{\text {2) }}$ | 80 | 45 | 1×3 NE1 022-0 | 125 | - | 3NP50, 3NP40 7 | 3KL52 30, 3KM52 30 |
| 3RW22 34-0DB15 | 97 | 55 | 1×3 NE1 225-0 | 200 | 95 | 3NP52, 3NP42 7 | 3KL55 30, 3KM55 30 |
| 3RW22 35-0DB15 | 134 | 75 | 1×3 NE1 227-03) | 250 | 120 | 3NP52, 3NP42 7 | 3KL55 30, 3KM55 30 |
| 3RW22 36-0DB15 | 160 | 90 | 1×3 NE1 230-0 | 315 | 2×70 | 3NP53, 3NP43 7 | 3KL57 30, 3KM57 30 |
| 3RW22 38-0DB15 | 194 | 110 | 1×3 NE1 333-0 | 450 | 2×120 | 3NP54, 3NP44 7, 3NP4 76 | 3KL61 30, 3KM57 30 |
| 3RW22 38-0DB15 | 228 | 132 | 1×3 NE1 334-0 | 500 | 2×120 | 3NP54, 3NP44 7, 3NP4 76 | 3KL61 30, 3KM57 30 |
| 3RW22 40-0DB15 | 280 | 160 | 1×3 NE1 334-0 | 500 | 2×120 | 3NP54, 3NP44 7, 3NP4 76 | 3KL61 30, 3KM57 30 |
| 3RW22 41-0DB15 | 345 | 200 | 1×3 NE1 436-0 | 630 | 2×185 | 3NP54, 3NP44 70, 3NP4 76 | 3KL61 30 |
| 3RW22 42-0DB1. ${ }^{4}$) | 430 | 250 | 2×3 NE1 331-0 | 350 | (2x) 2×95 | $2 \times 3 N P 53,2 \times 3 N P 437$ | $2 \times 3 \mathrm{KL57} 30,2 \times 3 \mathrm{KL61} 30$ |
| 3RW22 43-0DB1. ${ }^{\text {2)4) }}$ | 610 | 355 | 2×3 NE1 334-0 | 500 | $(2 \times) 2 \times 120$ | $2 \times 3 N P 54,2 \times 3 N P 447,2 \times 3 N P 476$ | $2 \times 3 \mathrm{KM} 5730$ |
| 3RW22 45-0DB1.4) | 690 | 400 | 2×3 NE1 435-03) | 560 | $(2 \times) 2 \times 150$ | $2 \times 3 N P 54,2 \times 3 N P 44$ 70, $2 \times 3 N P 476$ | $2 \times 3 \mathrm{KL61} 30$ |
| 3RW22 47-0DB1.4) | 850 | 500 | 2×3 SE1 436-03) | 630 | $(2 \times) 2 \times 185$ | $2 \times 3 N P 54,2 \times 3 N P 44$ 70, $2 \times 3 N P 476$ | 2×3 KL61 30 |
| 3RW22 50-0DB1.4) | 1060 | 630 | 3×3 NE1 436-03) | 630 | $(3 \times) 2 \times 185$ | $3 \times 3 N P 54,3 \times 3 N P 4470,3 \times 3 N P 476$ | $2 \times 3 \mathrm{KL61} 30$ |

1) The minimum conductor cross-section applies to $40^{\circ} \mathrm{C}$ ambient temperature, $79^{\circ} \mathrm{C}$ limit temperature. Single laying at a distance and with one fuse per phase. If there is more than one fuse per phase, a larger cross-section must be selected (see factors in parentheses). It may be necessary to lay different cross-sections in the event of deviating conditions (see DIN VDE 0298-4).
2) For these units, the service factor ($/ e \times 1.15$) was used!
3) These fuses do not provide semiconductor protection for voltages $>450 \mathrm{~V}$.
4) All-range fuses can only be used for the 415 V and 500 V types (-ODB14 and -ODB15). For the 600 V and 1000 V types (-ODB16 and ODB18), conductor protection and semiconductor protection fuses must be used, otherwise the soft starter is not sufficiently protected.

$\begin{aligned} & \text { SIKOSTART } \\ & \left(T_{u}=40^{\circ} \mathrm{C}\right) \\ & (200 \ldots 500 \mathrm{~V}) \end{aligned}$	Rated current I_{N} for the motor at 400 V A	Rated output P_{N} of motor at 400 V kW	Fuse for reduced load: Starting current $3 \times I_{\text {n }}$ for 5 s and 2 starts/h				
			SITOR fuse (operational class gR)	Rated current	Conductor protection per fuse ${ }^{1)}$ for Cu cable	3NP fuse switch disconnector	Switch disconnectors for 3KL, 3KM fuses
			Quantity per phase/type	A	$\geq \mathrm{mm}^{2}$		
3RW22 21-1AB15	6.8	3	1×3 NE1 813-0	16	1.5	3NP35, 3NP50, 3NP40 1, 3NP40 7	3KL50 30, 3KM50 30
3RW22 23-1AB15 ${ }^{2}$	11.4	5.5	1×3 NE1 814-0	20	2.5	3NP35, 3NP50, 3NP40 1, 3NP40 7	3KL50 30, 3KM50 30
3RW22 25-1AB15	15.4	7.5	1×3 NE1 815-0	25	4	3NP35, 3NP50, 3NP40 1, 3NP40 7	3KL50 30, 3KM50 30
3RW22 25-1AB15	21.4	11	1×3 NE1 803-0	35	6	3NP35, 3NP50, 3NP40 1, 3NP40 7	3KL50 30, 3KM50 30
3RW22 26-1AB155	28.5	15	1×3 NE1 817-0	50	10	3NP35, 3NP50, 3NP40 1, 3NP40 7	3KL50 30, 3KM50 30
3RW22 27-1AB15	35	18.5	1×3 NE1 818-0	63	16	3NP35, 3NP50, 3NP40 1, 3NP40 7	3KL50 30, 3KM50 30
3RW22 28-1AB15	41	22	1×3 NE1 818-0	63	16	3NP35, 3NP50, 3NP40 1, 3NP40 7	3KL52 30, 3KM50 30
3RW22 30-1AB15 ${ }^{2}$	55	30	1×3 NE1 820-0	80	25	3NP35, 3NP50, 3NP40 1, 3NP40 7	3KL52 30, 3KM52 30
3RW22 31-1AB15	67	37	1×3 NE1 821-0	100	353)	3NP50, 3NP40 7	3KL52 30, 3KM52 30
3RW23 31-1AB15 ${ }^{2}$	80	45	1×3 NE1 821-0	100	353)	3NP50, 3NP40 7	3KL52 30, 3KM52 30
3RW22 34-0DB15	97	55	1×3 NE1 022-0	125	50	3NP50, 3NP40 7	3KL52 30, 3KM52 30
3RW22 35-0DB15	134	75	1×3 NE1 224-0	160	70	3NP52, 3NP42 7	3KL55 30, 3KM55 30
3RW22 36-0DB15	160	90	1×3 NE1 225-0	200	95	3NP52, 3NP42 7	3KL55 30, 3KM55 30
3RW22 38-0DB15	194	110	1×3 NE1 227-0	250	120	3NP52, 3NP42 7	3KL55 30, 3KM55 30
3RW22 38-0DB15	228	132	1×3 NE1 230-0	315	2×70	3NP53, 3NP43 7	3KL57 30, 3KM57 30
3RW22 40-0DB15	280	160	1×3 NE1 331-0	350	2×95	3NP53, 3NP43 7	3KL57, 3KL61 30, 3KM57 30
3RW22 41-0DB15	345	200	1×3 NE1 332-0	400	2×95	3NP53, 3NP43 7	3KL57, 3KL61 30, 3KM57 30
3RW22 42-0DB1.4)	430	250	1×3 NE1 334-0	500	2×120	3NP54, 3NP44 7, 3NP4 76	$\begin{aligned} & \text { 3KL61 30, 3KM57 30, } \\ & 2 \times 3 \text { KL57, } 2 \times 3 \text { KL61 } 30 \end{aligned}$
3RW22 43-0DB1. ${ }^{2) 4)}$	610	355	2×3 NE1 331-0	350	$(2 \mathrm{x}) 2 \times 95$	$2 \times 3 N P 53,2 \times 3 N P 437$	$\begin{aligned} & 2 \times 3 K M 57 \text { 30, } 2 \times 3 \mathrm{KL57} \text {, } \\ & 2 \times 3 \mathrm{KL61} 30 \end{aligned}$
3RW22 45-0DB1.4)	690	400	2×3 NE1 332-0	400	(2x) 2×95	2×3 PP53, 2×3 PP43 7	$2 \times 3 \mathrm{KM} 5730$
3RW22 47-0DB1.4)	850	500	2×3 NE1 334-0	500	$(2 \times) 2 \times 120$	$2 \times 3 N P 54,2 \times 3 N P 447,2 \times 3 N P 476$	$2 \times 3 \mathrm{KL61} 30,2 \times 3 \mathrm{KM} 5730$
3RW22 50-0DB1.4)	1060	630	2×3 NE1 436-0	630	$(2 \times) 2 \times 185$	$2 \times 3 N P 54,2 \times 3 N P 4470,2 \times 3 N P 476$	$2 \times 3 \mathrm{KL6130}$

1) The minimum conductor cross-section applies to $40^{\circ} \mathrm{C}$ ambient temperature, $79^{\circ} \mathrm{C}$ limit temperature. Single laying at a distance and with one fuse per phase. If there is more than one fuse per phase, these fuses must be connected in parallel and a larger cross-section must be selected (see factors in parentheses). It may be necessary to lay different cross-sections in the event of deviating conditions (see DIN VDE 0298-4).
2) For these units, the service factor $\left(l_{e} \times 1.15\right)$ was used!
3) To connect the unit to $35 \mathrm{~mm}^{2}$ cables, they must be converted to $2 \times 16 \mathrm{~mm}^{2}$ using a terminal block.
4) All-range fuses can only be used for the 415 V and 500 V types -0DB14 and -0DB15). For the 600 V and 1000 V types (-0DB16 and -0DB18), conductor protection and semiconductor protection fuses must be used otherwise the soft starter is not sufficiently protected.

SIRIUS/SIKOSTART Soft Starters

For Advanced Applications

SIKOSTART soft starters

Radio interference suppression

The 3RW22.. units fulfill the requirements for limit value Class A
(industrial applications) as standard.
To achieve limit value Class B, a radio interference filter is required.

Climatic conditions			SN 29070 Part 1, climate CLASS J2
Mechanical conditions	Vibration resistance Shock resistance		SN 29 010, severity 13 acc. to IEC 60068-2-27
Noise immunity			
Electrostatic discharge acc. to IEC 60801-2	Test severity Air discharge Contact discharge (direct and indirect)	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 111 \\ & \pm 8 \end{aligned}$
Noise immunity Induced RF fields acc. to IEC 60801-6		V	$10 \mathrm{~V} ; 0.15 \mathrm{MHz}$... $230 \mathrm{MHz} ; 80$ \% AM modulated: 1 kHz
Burst acc. to IEC 60801-4	Test severity	kV	$\begin{aligned} & \hline \text { IV } \\ & 4 \end{aligned}$
Surge acc. to IEC 60801-5	Load and supply voltage Control circuit	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 4 / 2 \\ & 2 / 1 \end{aligned}$
Voltage dips acc. to IEC 60947-4-2	Test		A, B, C

Emitted interference

Conducted interference voltage acc. to IEC 60947-4-2	Limit CLASS Limit CLASS with single-stage filter	B
Noise field intensity acc. to IEC 60947-4-2	Limit curve	A

Soft starter type	Rated operating current	Voltage range $200 . . .500 \mathrm{~V}$			Voltage range $200 . . .415 \mathrm{~V}$			Voltage range $500 . . .690 \mathrm{~V}$		
	Soft starter A	Filter type B84143	Rated current filter A	Connection terminals mm^{2}	Filter type B84143	Rated current filter A	Connection terminals mm^{2}	Filter type B84143	Rated current filter A	Connection terminals mm^{2}
3RW22 21	7	G8-R112	8	4						
3RW22 23	10.5	G20-R112	20	4						
3RW22 25	22	G36-R112	36	6						
3RW22 26	28	G36-R112	36	6						
3RW22 27	35	G36-R112	36	6						
3RW22 28	45	G50-R112	50	16						
3RW22 30	50	G50-R112	50	16						
3RW22 31	70	G66-R112	66	25						
3RW22 34	100	G120-R112	120	50						
3RW22 35	135	G150-R112	150	50						
3RW22 36	160	G150-R112	150	50				A180-R21	180	
3RW22 38	235	G220-R112	220	95				B250-S21	250	$40 \times 25 \times 5^{2)}$
3RW22 40	300	B320-S20	320	$40 \times 25 \times 5^{11}$				B320-S21	320	$40 \times 25 \times 5^{2)}$
3RW22 41	355	B400-S20	400	$40 \times 25 \times 511$						
3RW22 42	450	B600-S20	600	$40 \times 30 \times 5^{11}$	B600-S20	600	$40 \times 25 \times 5^{1)}$	B600-S21	600	$40 \times 25 \times 5^{2)}$
3RW22 43	560	B600-S20	600	$40 \times 30 \times 5^{1)}$	B600-S20	600	$40 \times 25 \times 5^{1)}$	B600-S21	600	$40 \times 25 \times 5^{2)}$
3RW22 45	700	B1000-S20	1000	$50 \times 40 \times 8{ }^{11}$	B1000-S20	1000	$40 \times 25 \times 5^{1)}$			
3RW22 47	865	B1000-S20	1000	$50 \times 40 \times 8{ }^{11}$	B1000-S20	1000	$40 \times 25 \times 5^{1)}$	B1000-S21	1000	$40 \times 25 \times 5^{2)}$
3RW22 50	1200	B1600-S20	1600	$50 \times 40 \times 8^{1)}$	B1600-S20	1600	$40 \times 25 \times 5^{1)}$	B1600-S21	1600	$40 \times 25 \times 5^{2)}$

1) Contact address: The suppression filters mentioned above can be ordered from EPCOS AG (see Appendix $->$ External Partners).
2) Busbar connection: $L \times W \times H$.

SIRIUS/SIKOSTART Soft Starters
 For Advanced Applications

SIKOSTART soft starters

Type				3RW22 ..-..B1.	
Version				With solid-state device protection and RS 232 serial PC interface	
Adjustability of functions in the various device versions				on the unit, with potentiometers$20 \ldots 100 \times U_{n}$	via a PC, with COM SIKOSTART
Start-up	Breakaway pulse	Amplitude	\%		$21 . . .100 \times U_{n}$
		Duration	ms	50 ... 1000	$100 . .1000$
	Start ramp	Starting voltage	\%	$20 \ldots 100 \times U_{n}$	
		Duration	S	$0.3 \ldots 180$$50 \% \ldots 600 \% \times I_{e}$($I_{\text {e }}$: rated operating current)	0 ... 1000
	Current limiting	Amplitude			Numerical value in ampere, from 1 A to max. 6553 A or max. 6×1 e (l_{e} : rated operating current)
		Duration		until starting is detected	
	Voltage limiting	Amplitude	\%	-	$20 \ldots 100 \times U_{n}$
		Duration	s	-	0 ... 1000
	Start-up detection	Function		Automatic increase of the motor terminal voltage to $100 \% \times U_{n}$ on reaching the rated speed through p.f. and current detection.	
		p.f. detection can be deactivated		\times	
	Emergency start (only start ramp activ			x	
Operation	Energy saving mode			x	
	Bridging contactor operation			x	
	Continuous operation at max. $115 \% I_{\mathrm{e}}$ (full control of the thyristors)			\times	
Starting	Ramp-down			\times	
	Smooth ramp-down	Starting voltage of the stop ramp	\%	$\begin{aligned} & \text { fixed } \\ & 90 \times U_{n} \end{aligned}$	$20 \ldots 100 \times U_{n}$
		Switch-off voltage of the stop ramp	\%	85 of the starting voltage of the start ramp	$20 \ldots 100 \times U_{n}$
		Ramp-down time	s	1... 20	0 ... 1000
	Pump ramp-down	Switch-off voltage of pump ramp-down	\%	-	$20 \ldots 90 \times U_{n}$
		Ramp-down time	s	5 ... 90	5 ... 200
	DC braking	Braking torque		Inversely proportional to the braking time, 20%... 85% of the max. possible braking torque	20%... 100% of the max. possible braking torque, regardless of braking time
		Braking time	s	$3 . .18$	$1 . .18$

$U_{\mathrm{n}}=$ mains voltage

SIRIUS/SIKOSTART Soft Starters

For Advanced Applications
SIKOSTART soft starters

Selection and ordering data

3RW22 21

3RW22 23 and 3RW22 25

3RW22 26 ... 3RW22 31

3RW22 34 ... 3RW22 41

Rated operating voltage $U_{\text {e }}$	At ambient temperature $40^{\circ} \mathrm{C}$						At ambient temperature $55^{\circ} \mathrm{C}$						Order No.	PS*	Weight per PU approx.
	Rated operating current l_{e}	Rated output of three-phase induction motors for rated operating voltage U_{e}					Rated operating current $/ e$	Rated induction ing vol	utput of moto age U_{e}	three-ph for rate	ase d operat-				
		$230 \mathrm{~V}$	$400 \mathrm{~V}$	$500 \mathrm{~V}$	$690 \text { V }$	$1000 \text { V }$		$200 \mathrm{~V}$	$230 \mathrm{~V}$	$460 \mathrm{~V}$	$575 \mathrm{~V}$				
V	A	kW				kW	A	hp	hp	hp	hp				kg
Soft starters for three-phase asynchronous motors with electronic protection and serial RS 232 interface															
$200 . . .500$	7	1.5	3	4	-	-	5.5	1	1	3	-	-	3RW22 21-1AB15	1 unit	2.210
	$\begin{aligned} & 10.5 \\ & 22 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4 \\ & 11 \end{aligned}$	$\begin{aligned} & \hline 5.5 \\ & 15 \end{aligned}$	-	-	$\begin{aligned} & 9 \\ & 16 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 10 \end{aligned}$		-	3RW22 23-1AB15 3RW22 25-1AB15	1 unit 1 unit	$\begin{aligned} & 3.560 \\ & 3.710 \end{aligned}$
	28	7.5	15	18.5	-	-	22	5	7.5	15	-	-	3RW22 26-1AB15	1 unit	4.910
	$\begin{aligned} & 35 \\ & 45 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 11 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 22 \end{aligned}$	$\begin{aligned} & 22 \\ & 30 \end{aligned}$	-	-	$\begin{aligned} & 32 \\ & 37 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$		-	3RW22 27-1AB15 3RW22 28-1AB15	1 unit 1 unit	$\begin{aligned} & 5.460 \\ & 5.460 \end{aligned}$
	$\begin{aligned} & 50 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline 15 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 22 \\ & 37 \end{aligned}$	$\begin{aligned} & 30 \\ & 45 \end{aligned}$			$\begin{aligned} & 45 \\ & 63 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & \hline \end{aligned}$		∇	$\begin{aligned} & \text { 3RW22 30-1AB15 } \\ & \text { 3RW22 31-1AB15 } \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 8.500 \\ & 8.920 \end{aligned}$
	100	30	55	75	-	-	85	25	30	60	-	-	3RW22 34-0DB15	1 unit	16.000
	135	37	75	90	-	-	110	30	40	75	-	-	3RW22 35-0DB15	1 unit	17.100
	160	45	90	110	-	-	140	40	50	100	-	-	3RW22 36-0DB15	1 unit	16.500
	235	75	132	160	-	-	205	60	75	150	-	-	3RW22 38-0DB15	1 unit	20.600
	300	90	160	200	-	-	250	75	100	200	-	-	3RW22 40-0DB15	1 unit	20.600
	355	110	200	250	-	-	300	100	100	250	-	-	3RW22 41-0DB15	1 unit	20.700
	450	132	250	315	-	-	355	100	125	300	- A	A	3RW22 42-0DB15	1 unit	62.000
	560	160	315	400	-	-	450	150	150	350	- A	A	3RW22 43-0DB15	1 unit	64.100
	700	200	400	500	-	-	560	200	200	450	- A	A	3RW22 45-0DB15	1 unit	40.000
	865	250	500	630	-	-	700	250	250	600	- A	A	3RW22 47-0DB15	1 unit	103.000
	1200	400	710	900	-	-	1000	350	400	850	- A	A	3RW22 50-0DB15	1 unit	131.000
$200 . .415$	450	132	250	-	-	-	355	100	125	-	- A	A	3RW22 42-0DB14	1 unit	57.400
	560	160	315	-	-	-	450	150	150	-	- A	A	3RW22 43-0DB14	1 unit	58.600
	700	200	400	-	-	-	560	200	200	-	- A	A	3RW22 45-0DB14	1 unit	52.000
	865	250	500	-	-	-	700	250	250	-	- A	A	3RW22 47-0DB14	1 unit	96.400
	1200	400	710	-	-	-	1000	350	400	-	-	A	3RW22 50-0DB14	1 unit	70.000
$500 \ldots 690$	160	-	-	110	160	-	140	-	-	-	125	C	3RW22 36-0DB16	1 unit	17.500
	235	-	-	160	200	-	205	-	-	-	200	C	3RW22 38-0DB16	1 unit	20.600
	300	-	-	200	315	-	250	-	-	-	250	C	3RW22 40-0DB16	1 unit	21.100
	450	-	-	315	450	-	355	-	-	-	350	A	3RW22 42-0DB16	1 unit	57.300
	560	-	-	400	560	-	450	-	-	-	450	C	3RW22 43-0DB16	1 unit	16.200
	865	-	-	630	900	-	700	-	-	-	700	C	3RW22 47-0DB16	1 unit	130.000
	1200	-	-	900	1200	-	1000	-	-	-	1000	X	3RW22 50-0DB16	1 unit	130.000
1000	160	-	-	-	-	200	140	-	-	-	-	C	3RW22 36-0DB18	1 unit	20.900
	300	-	-	-	-	400	250	-	-	-	-	C	3RW22 40-0DB18	1 unit	63.600
	450	-	-	-	-	630	355	-	-	-	-	C	3RW22 42-0DB18	1 unit	45.000

The 3RW22 solid-state soft starters are designed for normal operation (inertia load of the overall operating mechanism $J_{\text {load }}<10 \times J_{\text {motor; }}$ starting current 300% for 30 s or similar load, e.g. large fans). For any other conditions of use, the devices should be selected using the Win-SIKOSTART selection and simulation program. See Technical specifications for information about rated currents for ambient temperatures $>40^{\circ} \mathrm{C}$.
Soft starter selection depends on the motor's rated current.

Accessories

	DT	Order No.	PS*	Weight per PU approx.
				kg
Planning, Commissioning \& Installation manual				
German English Spanish	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { E20001-P285-A484-V3 } \\ & \text { E20001-P285-A484-V2-7600 } \\ & \text { E20001-P285-A484-V2-7800 } \end{aligned}$	1 unit 1 unit 1 unit	on req. on req. on req.
COM SIKOSTART PC communication program ${ }^{1)}$				
User interface for PC communication via RS 232 serial interface in English, French, German, Italian and Spanish. Disk format 3 1/2"	-	3RW27 01-0AA00	1 unit	0.078
Cable				
for PC communication (modified RS 232 cable) 5 m long	-	3RW29 20-1DA00	1 unit	0.176
Enclosure				
for IP54 degree of protection for 3RW22 23 ... 3RW22 31	-	3RW29 20-0AB00	1 unit	8.590
Operating instructions				
Operating manuals in English, French, German, Italian, Portuguese and Spanish (supplied with the unit as standard) can be downloaded free of charge as an Acrobat Reader file from the Internet at www.siemens.com/automation/manuals. Enter "SIKOSTART manuals" as a search term or "3RW22 manuals" as the search term.	B	3ZX1012-0RW22-1AN1	1 unit	0.263

Spare parts

For solid-state soft starters	Maximum number required per device	DT	Order No.	PS*	Weight per PU approx.
					kg
Control unit with solid-state device protection and RS 232 serial interface					
$\begin{aligned} & \text { 3RW22 ..-ODB14, 3RW22 ..-ODB15 } \\ & \text { 3RW22 ..-ODB16 } \\ & \text { 3RW22 ..-0DB18 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	3RW29 20-1BC05 3RW29 20-1BC06 3RW29 20-1BC08	1 unit 1 unit 1 unit	$\begin{aligned} & 1.190 \\ & 1.210 \\ & 1.220 \end{aligned}$
Thyristor assembly					
3RW22 42-ODB14, 3RW22 43-0DB14 3RW22 45-0DB14 3RW22 47-ODB14 3RW22 50-0DB14	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { D } \\ & \text { D } \end{aligned}$	3RW29 20-6KC00 3RW29 20-6KD00 3RW29 20-6KE00 3RW29 20-6KH00	1 unit 1 unit 1 unit 1 unit	$\begin{array}{r} 8.500 \\ 7.140 \\ 9.870 \\ 26.700 \end{array}$
3RW22 42-ODB15, 3RW22 43-ODB15 3RW22 45-0DB15 3RW22 47-0DB15 3RW22 50-0DB15	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	3RW29 20-6LC00 3RW29 20-6LD00 3RW29 20-6LE00 3RW29 20-6LH00	1 unit 1 unit 1 unit 1 unit	$\begin{array}{r} 4.780 \\ 5.630 \\ 17.500 \\ 25.500 \end{array}$
3RW22 42-ODB16, 3RW22 43-ODB16 3RW22 47-ODB16	$\begin{array}{r} 3 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & \text { A } \\ & \text { D } \end{aligned}$	3RW29 20-6MC00 3RW29 20-6ME00	1 unit 1 unit	$\begin{array}{r} 9.330 \\ 30.000 \\ \hline \end{array}$
Current transformers					
3RW22 34-0DB1., 3RW22 35-0DB1., 3RW22 36-ODB1., 3RW22 37-0DB1. 3RW22 38-0DB1., 3RW22 40-0DB1. 3RW22 41-ODB1. 3RW22 42-0DB1., 3RW22 43-0DB1. 3RW22 45-0DB1. 3RW22 47-ODB1., 3RW22 50-0DB1.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	A A A A A A	3RW29 20-2AD00 3RW29 20-2AE00 3RW29 20-2AK00 3RW29 20-2AH00 3RW29 20-2AL00 3RW29 20-2AJ00	1 unit 1 unit	$\begin{aligned} & 0.336 \\ & 0.273 \\ & 0.282 \\ & 0.515 \\ & 0.440 \\ & 0.945 \end{aligned}$
Fans					
3RW22 34-0DB1., 3RW22 35-0DB1., 3RW22 36-0DB1. ${ }^{1)}$, 3RW22 37-0DB1., 3RW22 38-0DB1. 3RW22 36-ODB18, 3RW22 40-ODB1. ${ }^{1)}$, 3RW22 41-ODB1 3RW22 42-0DB1. ${ }^{1}$, 3RW22 40-ODB18 3RW22 43-0DB1., 3RW22 42-0DB18, 3RW22 45-ODB1. 3RW22 47-ODB1., 3RW22 50-ODB1.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	3RW29 20-3AC00 3RW29 20-3AC00 3RW29 20-3AF00 3RW29 20-3AD00 3RW29 20-3AE00	1 unit 1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & 0.619 \\ & 0.619 \\ & 0.718 \\ & 1.250 \\ & 0.985 \end{aligned}$
Surge suppressor circuit					
3RW22 34-ODB1., 3RW22 35-0DB1., 3RW22 36-0DB1. 3RW22 37-ODB1., 3RW22 38-0DB1., 3RW22 40-ODB1., 3RW22 41-ODB1. 3RW22 42-0DB1., 3RW22 43-0DB1., 3RW22 47-0DB1., 3RW22 50-0DB1.	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	3RW29 20-4AC00 3RW29 20-4AD00 3RW29 20-4AD00	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 0.219 \\ & 0.285 \\ & 0.285 \\ & \hline \end{aligned}$
Temperature sensors					
3RW22 21-1AB1. to 3RW22 31-1AB1. 3RW22 34-ODB1. to 3RW22 50-ODB1.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { 3RW29 00-3AA00 } \\ & \text { 3RW29 00-3BA00 } \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.007 \\ & 0.008 \end{aligned}$
Covers					
3RW22 34-ODB1. to 3RW22 41-ODB1. ${ }^{1)}$ 3RW22 42-0DB1. to 3RW22 45-0DB1., 3RW22 40-0DB18 3RW22 47-ODB14, 3RW22 47-ODB15 3RW22 47-ODB16, 3RW22 50-ODB1.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { D } \end{aligned}$	3RW29 20-0BA00 3RW29 20-0BB00 3RW29 20-0BC00 3RW29 20-0BD00	1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & 0.392 \\ & 2.120 \\ & 1.700 \\ & 3.300 \end{aligned}$
1) Does not apply to 3RW22 ..-ODB18					

Further information

Configuration

The 3RW22 solid-state starters are designed for normal starting. In case of heavy starting or increased starting frequency, a larger unit must be selected.
If necessary, an overload relay for heavy-starting must be selected where long starting times are involved. PTC thermistor detectors are recommended. This also applies for the ramp-down modes soft ramp-down, pump ramp-down and DC braking, because during the ramp-down time in these modes, an additional current loading applies in contrast to free ramp-down.
In the motor feeder between the SIKOSTART and the motor, no capacitive elements are permitted (e.g. compensation equipment).
All elements of the main circuit (such as fuses, switching devices and overload relays) should be dimensioned for direct starting, following the local short-circuit conditions. Fuses, switching devices and overload relays must be ordered separately.
The harmonic component load for starting currents must be taken into consideration for the selection of circuit-breakers (selection of release).

Use with EEx-protected motors

The units are suitable for starting EEx-protected motors with types of protection "d", "p" and "n", insofar as the relevant mode does not give rise to any expected noteworthy influence of starting behavior on heat development.
Explanation:
Type of protection

- "d" = flameproof enclosure
- "p" = overpressure enclosure
- "n" = designed for Zone 2

SIEMENS has received a confirmation from the German national standards laboratory (PTB) in Brunswick that, in relation to motors with the type of protection "d", there are no objections to including starting with SIKOSTART within the scope of the conditions upon which the general conformity certificates are based, and that there is no need to expressly mention this.
Express mention of this in the conformity certificate of the motors will also not be necessary in the future.
The devices are suitable for starting EEx-protected motors with types of protection "e" provided heavy starting is not involved. The ramp time on the unit must be set to a value that is at most equal to the T_{E} time of the machine. A test report with the PTB No. 3.53-542/96 is available.

Manual for SIKOSTART 3RW22

Besides containing all important information on planning, commissioning and servicing, the manual also contains suggested circuits and the technical data for all devices.

Electronic overload protection, serial RS 232 PC interface and COM SIKOSTART PC communication program

In addition to the electronic device protection, the 3RW22 electronic motor controllers feature a PC communication interface.
Together with the PC program COM SIKOSTART, it enables simple parameter definition, control and observation of SIKOSTART 3RW22 via a PC or a notebook.
Once entered, a parameter set can be stored in the PC and then retrieved when defining the parameters of a unit with the same kind of drive.
Parameters can be entered more precisely and independently of one another than when using the potentiometers.
It is also possible to store two or three parameter sets in the SIKOSTART 3RW22. Thus, the units are excellently suitable for use with Dahlander and reversible-pole motors, wind energy systems and for serial starting of motors with different outputs or loads.

Win-SIKOSTART selection and simulation program

With this software, you can simulate and select all Siemens soft starters, taking into account various parameters such as mains properties, motor and load data, and special application requirements.
The software is a valuable tool, which makes complicated, lengthy manual calculations for determining the required soft starters superfluous.
You can order the CD-ROM under the following order number: Order No.: E20001-D1020-P302-X-7400.

SIKOSTART training course (D91/D92)

Siemens offers a 2-day training course on the SIKOSTART solidstate motor controllers to keep customers and own personnel up-to-date on configuring, commissioning and servicing issues.
Please direct enquiries and applications to:
Training Center
I\&S IS E\&C TC
Werner-von-Siemens-Str. 65
D-91052 Erlangen
Telephone:++49 (9131) 729262
Telefax: $\quad++49$ (9131) 728172
sibrain@erlg.siemens.de
www.siemens.com/sibrain

SIRIUS/SIKOSTART Soft Starters
 For Standard and Advanced Applications

Project planning aids
Dimension drawings
for standard applications
3RW30 03-1.... (screw-type terminals)

3RW30 03-2.... (spring-type terminals)

3RW30 1.

3RW30 3.

3RW30 4.

[^3]
SIRIUS/SIKOSTART Soft Starters
 For Standard and Advanced Applications

Project planning aids

3RW34

Type	$\begin{aligned} & l_{e}^{1)} \\ & \text { [Ampere] } \end{aligned}$	Width (W)	$\begin{aligned} & \text { Height } \\ & (\mathrm{H}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { (D) } \\ & \hline \end{aligned}$	Mounting width (MW)	Width offset (Q)	Mounting height (MH)	Height offset (P)	Bore holes (BH)
3RW34 5.	$57 . . .135$	216	356	187	127/94	61	327	16	6 (4)
3RW34 6.	162 ... 235	292	381	189	248	22	332	27	6 (4)
3RW34 72	352	344	417	224	286	29	336	45	6 (4)
3RW34 83,	500,	442	517	231	133 (3)	18	450	32	6 (8)
3RW34 84	700								
3RW34 86	1050	448	719	325	101/138/138	23	653	29	6 (8)

1) The current values refer to the standard circuit.

for advanced applications

3RW22 23 to 3RW22 31

Distance to other devices:
or unobstructed supply and extraction of cooling air, the vertical distance to other devices must not be less than the following values:
3RW22 21 to 3RW22 31: 200 mm
Horizontal distance for connection of the control leads only necessary for 3RW22 21 to 3RW22 26.

Type	a_{1}	a_{2}	$\mathrm{~b}_{1}$	$\mathrm{~b}_{2}$	c_{1}	c_{2}	c_{3}	$\mathrm{~d}_{1}$	$\mathrm{~d}_{2}$	$\mathrm{~g}_{1}$
3RW22 23	125	95	240	230	177.5	2	130	30	45	4.6
3RW22 25	125	95	240	230	177.5	2	130	30	45	4.6
3RW22 26	165	135	240	230	180	2	132.5	30	65	4.6
3RW22 27	205	175	280	270	180	2	132.5	50	85	4.6
3RW22 28	205	175	280	270	180	2	132.5	50	85	4.6
3RW22 30	222.5	185	290	275	225	2.5	175	55	94	6.6
3RW22 31	222.5	185	290	275	225	2.5	175	55	94	6.6

SIRIUS/SIKOSTART Soft Starters For Standard and Advanced Applications

Project planning aids

3RW22 34 to 3RW22 41

3RW22 42 to 3RW22 50

Type	a	b
3RW22 34 to 3RW22 36	20	3
3RW22 38 to 3RW22 41 ${ }^{\text {1 }}$	25	5

Distance to other devices:
For unobstructed supply and extraction of cooling air, the vertical distance to other devices must not be less than the following values:
3RW22 34 to 3RW22 45: 200 mm
3RW22 47 and 3RW22 50: 400 mm

1) 3RW22 40-0DB18 has identical dimensions to 3RW22 42-0DB15!

| Type | H | B | T | a | b | c | d | e | f | g |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3RW22 42,
 3RW22 43,
 3RW22 45 | 655 | 465 | 255 | 400 | 90 | 11 | 605 | 80 | 210 | 370 |
| 3RW22 47 | 730 | 560 | 340 | 480 | 115 | 11 | 680 | 100 | 260 | 460 |
| 3RW22 50,
 3RW22 47-0DB16 | 875 | 600 | 330 | 520 | 115 | 13 | 825 | 105 | 275 | 485 |

$\left.\begin{array}{lc|c|c|c|c|c|c|c|c}\hline \text { Type } & \mathrm{m} & \mathrm{n} & \mathrm{p} & \mathrm{r} & \mathrm{t} & \mathrm{v} & \mathrm{w} & \mathrm{x} & \mathrm{y} \\ \hline \begin{array}{l}\text { 3RW22 42, } \\ \text { 3RW22 43, } \\ \text { 3RW22 45 }\end{array} & 15 & 570 & 145 & 215 & 20 & 25 & 87.5 & 30 & 5 \\ \hline \begin{array}{l}\text { 3RW22 47 }\end{array} & 20 & 645 & 230 & 295 & 25 & 27 & 100 & 40 & 8 \\ \begin{array}{l}\text { 3RW22 50, } \\ \text { 3RW22 47-0DB16 }\end{array} & 20 & 790 & 220 & 285 & 25 & 29 & 110 & 50 & 10\end{array}\right) 13$

3RW29 20-0AB00

Motor Management Systems

SIMOCODE-DP motor protection and

control devices

Overview

SIMOCODE-DP Basic Unit, Expansion Module and Operator Module
The communication-capable SIMOCODE-DP 3UF5 Motor Protection and Control Unit is used, in particular, in low-voltage controlgear for motor control centers in the process engineeringindustry and forms the intelligent connection between the motor feeder (motors with constant speed) and the process control system.

Easy construction of a motor feeder with SIMOCODE-DP

Multifunctional, electronic motor protection and plant monitoring

SIMOCODE-DP features a combination of numerous protective mechanisms such as

- Current-sensitive motor protection (CLASS 5-30)
- Thermistor motor protection
- Rotor locking protection
- Ground-fault monitoring, as well as
- Monitoring adjustable current limits
to ensure problem-free processes.
The current transformer for measuring the motor current is already built into SIMOCODE-DP.
Rated motor currents from 0.25 to 820 A are supported by just six variants.

With this technology, plant availability can be increased and at the same time, cost savings are achieved for construction, commissioning and during operation of a plant.
SIMOCODE-DP offers the solution for a wide range of different tasks in a single unit:

- Multifunctional, electronic motor protection and plant monitoring
- Comprehensive motor and plant diagnostics
- Integrated control programs (instead of extensive hardware wiring)
- Open communication via PROFIBUS DP, the standard for fieldbus systems.

Comprehensive motor and plant diagnostics

SIMOCODE-DP provides a variety of operating, service and diagnostic data, such as

- The currently flowing phase current
- Switching state of the motor
- Motor operating hours
- Number of switching cycles of the motor
- Number of overload tripping operations, as well as
- Detailed early warning messages or error messages.

The following advantages result:

- Faults can be prevented
- The plant electrician or process operator is comprehensively informed about the operational status of the load feeder
- Errors can be diagnosed and rectified quickly.

Motor Management Systems

SIMOCODE-DP motor protection and control devices

Integrated control programs (instead of extensive hardware wiring)

In SIMOCODE-DP, many predefined motor control functions can be called up, such as

- Direct on-line starter
- Reversing starter
- Star-delta starter
- Two speeds, motors with a separate winding
- Two speeds, motors with a separate Dahlander winding
- Gate valve control
- Solenoid valve or
- Soft starter.

All the interlocks and logic operations necessary for operation of the required motor controls are included in their software and switch the motor contactors on or off directly by means of the SIMOCODE-DP relay outputs.
These ready-to-use control functions can also be adapted to each customized variant of a motor feeder by means of freelyparameterizable elements, such as timers, counters, logic operations (AND, OR, NOR, etc.).
Wiring overhead for the control circuit is reduced considerably and a high level of standardization is achieved for the motor feeder in terms of hardware structure and circuit diagrams.

Open communication via PROFIBUS DP, the standard for fieldbus systems
SIMOCODE-DP with its integrated PROFIBUS DP interface replaces the complete system of single wires including marshalling racks, which would otherwise be necessary for data transfer to and from the higher-level automation system.
The otherwise complex and expensive cabling is thus reduced to a single 2-wire cable.
SIMOCODE-DP supports the communication functions of

- DP-V0 (cyclic data transfer, GSD configuration, diagnostics) and
- DP-V1 (non-cyclic data transfer, integration into engineering tools with EDD, interrupts).
With SIMOCODE-DP, the following baud rates (Kbits/s) are possible:
- 9.6
- 45.45
- 93.75
- 187.5
- 500
- 1500

Motor Management Systems

SIMOCODE-DP motor protection and

control devices

Design

The SIMOCODE-DP system hardware comprises

- Basic unit
- Expansion module and
- Control module.

Basic unit

(1) Connection of thermistor or summation transformer
(2) Connection of control supply voltage
(3) Three LEDs
(4) Test/reset button for device test or manual reset
(5) Four relay outputs, floating
(6) Four inputs (24 V)
(7) PC/system interface
(8) PROFIBUS-DP interface

Front view of the basic unit

The following variants are available for the basic unit:

- Six different types of construction due to the integrated current transformer for currents up to 820 A; for devices with operating ranges up to 100 A , the current transformers are designed as straight-through current transformers, for higher currents, the current transformers have rail connections
- Three control voltage variants for DC $24 \mathrm{~V}, \mathrm{AC} 115 \mathrm{~V}$ and AC 230 V
- Two variants of sensor input:
- Connection of a thermistor sensor (PTC/NTC/KTY) for direct temperature sensing in the motor winding or
- Connection of a separate summation transformer (3UL2 20.-.A) for detecting small ground-fault currents; this form of "external" ground-fault detection is normally used for networks that are grounded with a high impedance
- Two possible designs of relay outputs: Monostable response (tripping on failure of the control supply voltage) or bistable response (no tripping on failure of the control supply voltage).

All basic units have four optically decoupled inputs that are supplied via a system-internal DC 24 V voltage. The inputs are freely programmable, i.e. any digital, floating signals can be applied to them for control/monitoring of the motor feeder.
There are also four floating, freely-programmable relay outputs with which any actuators can be controlled (e.g. the motor contactors).

The communication interfaces that are available on the basic unit are the PROFIBUS DP interface as well as an RS232 system interface. PROFIBUS DP can either be connected via a standard Sub-D connector or via terminals (optimal for installation in I.v. switchgear in draw-out design).
The RS232 system interface can be used either to connect additional system components, such as

- an expansion module
- a control module
or a PC complete with WIN-SIMOCODE-DP software.

Expansion module

(1) PC/system interface
(2) Four relay outputs, floating
(3) Eight inputs ($24 \mathrm{~V}, 115 \mathrm{~V}, 230 \mathrm{~V}$)

Front view of expansion module
The expansion module with an additional eight freely programmable inputs and four relay outputs is only necessary when the number of inputs and outputs in the basic unit are not sufficient (approximately 10% of applications).
The control voltage is supplied to the expansion module via the basic unit. The inputs must be supplied from an external supply voltage, alternatively DC $24 \mathrm{~V}, \mathrm{AC} 115 \mathrm{~V}$ or AC 230 V .
The left-hand RS232 system interface establishes the connection to the basic unit, the control module or a PC with the appropriate Win-SIMOCODE-DP software can be connected to the right-hand system interface.

Control module

(1) Eight LEDs
(2) Labelling strips

Front view of control module

The control module is used to control the motor feeder from the door of the control cabinet and therefore replaces all the conventional pushbuttons and indicator lights that would otherwise be necessary for monitoring and controlling the motor

Via the RS232 system interface on the rear, the control module can be connected to the basic unit or the expansion module. Power is supplied from the basic unit.

The three pushbuttons are freely programmable, but it is appropriate to use them for controlling the motor feeder.
A total of eight LEDs are available, six of which are freely programmable. Depending on the application, various different signals can be indicated.

A PC with the Win-SIMOCODE-DP software can be connected via the front RS232 system interface (with cover for IP54).

Safe isolation

All electric circuits in SIMOCODE-DP (from product version 12, start of delivery 01/2000) are safely isolated from each other according to

- DIN VDE 0100 (similar to IEC 60364),
- DIN VDE 0106 (or new standard EN 50274),
-EN 50178.

That is, they are designed with double leakage paths and clearances. In the event of a fault, therefore, no parasitic voltages can be formed in neighboring circuits. In this context, compliance with the instructions in the test report Safe isolation No. 1610a is required.

Connection and mounting

Devices with current adjustment ranges from 1.25 to 100 A (overall width 70 mm) are designed for installation as a single unit due to the straight-through current transformer, i.e. they are either snapped onto a 35 mm standard rail to EN 50022 or screwed onto a mounting plate using push-in lugs that are available as accessories.
The main conductors are simply passed through the straightthrough current transformer integrated into the enclosure, using multiple loops, loads with rated motor currents of less than 1.25 A can also be protected.

With current adjustment ranges greater than 100 A to 820 A (overall widths: $120 \mathrm{~mm}, 145 \mathrm{~mm}$ and 230 mm), the devices can be directly fitted to the contactor via the connecting rails of the current transformer.

A screw fastening for these devices is integrated in the enclosure.
For the basic units (overall width:120 mm), a baseplate for snapon attachment on a 75 mm standard mounting rail is available.

Functions

Protective and monitoring functions

For the protection of loads against impermissible high temperature rises

Types of overload protection:

- Current-sensitive, electronic overload protection with adjustable tripping characteristics (class times)
SIMOCODE-DP protects three-phase or AC motors from overloading in accordance with the requirements of IEC 60947-4-1. The class (trip class) indicates the maximum tripping time during which SIMOCODE-DP must trip at 7.2 times the operational current from cold. The trip class can be set in six stages from CLASS 5 to CLASS 30. The switch-off time can therefore be extremely finely adjusted to the load torque of the motor - to optimize utilization of the motor (see also the section Characteristics).
- Phase failure / unbalance monitoring

A signal is output for a phase unbalance greater than 40%. The tripping times of the overload characteristic are reduced, because the heat generated in the motor rises under unbalanced conditions (additional eddy-current losses).

- Thermistor motor protection

Temperature-dependent motor protection is based on direct temperature measurements in the motor. These protective functions should be used, in particular, in motors with high operating frequencies, heavy-duty starting, intermittent and/or
braking operation, but also in the case of a blocked air supply or speeds lower than the rated speed. For this reason, a wide range of different temperature sensors are available that are installed in the stator winding or in the motor enclosure.
SIMOCODE-DP can evaluate the following sensor types:

- Binary PTC sensors whose resistance rises sharply when the temperature limit is reached
- Analog temperature sensors, such as NTC, KTY83/84, which have an almost linear characteristic and can therefore be set to any warning or switch-off temperatures.

EEx e type of protection

The SIMOCODE-DP system is in accordance with the regulations for overload protection of explosion-protected motors of the EEx e "Increased safety" type of protection to

- EN 50019, IEC 60079-7 (increased safety e),
- EN 60079-14, IEC 60079-14 (explosive gas atmospheres),
- EN 50281 (presence of combustible dust),
- and the ATEX/PTB test regulations.

In the case of SIMOCODE-DP units with DC 24 V control infeed, isolation by battery or safety transformer in accordance with EN 61558-2-6 must be assured.

EU prototype test certificate No.: PTB01 ATEX 3219
Test report: PTB EX 01-30013

Motor Management Systems

SIMOCODE-DP motor protection and

control devices

Rotor locking protection

When the motor current rises above a rotor locking threshold that can be set, SIMOCODE-DP does not trip in accordance with the overload characteristic, but switches off immediately instead.
The prevention of unnecessary thermal loads prevents premature aging of the motor. The rotor locking protection is not active for start-up monitoring until the class time has elapsed, e.g. for CLASS 10 after 10 seconds.

Ground-fault monitoring
Two qualitatively different ground-fault monitoring functions are offered:

- "Internal" ground-fault monitoring by means of calculation The internal ground-fault monitoring is only suitable for motors with 3-wire connection and for networks that are grounded directly or with a low impedance. In this case, the ground-fault current is calculated by vector addition of the phase currents of the SIMOCODE-DP current transformer. An additional summation current transformer is not necessary. In fault-free systems, the vectorial summation current of the three phases is zero; if this is not the case, an ground-fault is signaled. Groundfault currents that are more than 30% of the operating current I_{e} are detected.
- External ground-fault monitoring by means of measurement The external ground-fault detection is normally used in supply systems that have a high impedance ground. An additional summation current transformer (3UL2 20.-. A) is required for this method that is also suitable for extremely low ground-fault currents. Detected fault current, depending on the summation current transformer: 0.3/0.5/1 A.

Current limit monitoring $\mathrm{l}>, \mathrm{l}<$

Current limit monitoring is not used for motor protection, but for process monitoring.
It is used to detect developing irregularities in the plant early, e.g. motor bearings becoming tight (consequence: upper limit responds) or the belt coupling to the drive machine tears (consequence: lower limit responds).

Comprehensive motor and plant diagnostics

SIMOCODE-DP provides a variety of measuring, operating and diagnostics data concerning the load feeder:

- Up-to-date information during operation, e.g.
- The currently flowing phase current in \%
- The switching state of the motor (On, Off, clockwise, counterclockwise, fast, slow) derived from the current flow
- Manual/automatic mode
- Test mode
- Cooling time activated after an overload tripping operation
- Detection of incipient faults, e.g.
- Overload warning
- Current limit overshoot
- Phase unbalance
- Thermistor warning
- Rapid diagnosis in the event of an alarm (up to 30 individual messages), e.g.
- Overload
- Thermistor motor protection
- Rotor locking
- Current limit overshoot
- Checkback error (e.g. no current following On command)
- Preventive maintenance by means of statistical data, e.g.:
- Number of starts
- Number of overload trips
- Tripping currents
- Operating hours.

Integrated standard programs for motor control

In SIMOCODE-DP, a number of different opportunities for controlling the motor have been predefined and can be called up in the form of control functions:

- Overload relay
- Direct on-line starter
- Reversing starter
- Star-delta starter
- Two speeds, Dahlander winding
- Two speeds, separate winding
- Valve
- Actuator
- Soft starter (SIKOSTART).

These control programs already include all the software interlocks and logic operations required for operation of the required motor functions.
It is also monitored whether the checkback for current from the motor feeder is compatible with the control command. If not, SIMOCODE-DP opens the motor contactor and generates an alarm indication.

The motor can be controlled by any equipment in accordance with the application:

- From the process control system of the PC via PROFIBUS DP
- From the control cabinet door via the operator module
- From a local control point on the motor, whereby the pushbuttons/switches are wired to the SIMOCODE-DP inputs.
The standard control functions can also be adapted to each customized variant of a motor feeder by means of freely-parameterizable elements, such as timers, counters, logic operations (AND, OR, NOR, etc.).
Furthermore, special standard function blocks are stored in SIMOCODE-DP:
- Automatic, time-discrete reactivation of motors following mains failure
The prerequisites are as follows:
- Failure of the three-phase supply must take place via a separate voltage relay
- The supply voltage of SIMOCODE-DP must not be interrupted
- Different error signaling modules with and without acknowledgement
These allow SIMOCODE-DP to trip as a result of external events (e.g. overspeed governor has tripped)
- The emergency start function This resets the thermal memory of SIMOCODE-DP immediately after overload tripping, i.e. immediate restarting is possible (important, for example, for a fire-extinguisher pump)
- The test function for the load feeder

This can be activated by switching off the main switch Q1 (see the section Circuit Diagrams) and allows the control circuit to be checked with the motor branch at zero current.

Autonomous operation

A significant feature of SIMOCODE-DP is autonomous processing of all integral protection and control mechanisms, i.e. even in the event of failure of the bus system or automation system, correct functioning of the motor feeder is guaranteed.

Motor Management Systems

SIMOCODE-DP motor protection and control devices

Integration

Universal application of SIMOCODE-DP in any automation system
In communication-capable controlgear, over and above the device function and hardware design a great deal of emphasis is placed on system integration, i.e. optimal integration capability in various different system configurations and process automation systems.
For this reason, the SIMOCODE-DP modular system offers as options a wide range of software packages for system-wide and time-saving configuring and diagnostics:

- PC software Win-SIMOCODE-DP for start-up and service
- Object manager OM-SIMOCODE for "totally integrated" in SIMATIC S7
- Function block FB-SIMOCODE for "totally integrated" in PCS7.

PC software Win-SIMOCODE-DP for start-up and service

Win-SIMOCODE-DP is "Plug and Play"-capable, process independent standard PC software for start-up and service.
It offers a user-friendly and convenient user-interface for

- Parameterization
- Display and diagnostics
- Test functions
- Motor control

Win-SIMOCODE-DP is available in two versions:

- Win-SIMOCODE-DP / Smart

Interfacing to SIMOCODE-DP via the RS232 interface, i.e. point-to-point

- Win-SIMOCODE-DP / Professional Interfacing to SIMOCODE-DP selectable
- Distributed via RS232
- Centrally via PROFIBUS DP (V1).

Motor Management Systems

SIMOCODE-DP motor protection and

control devices

Object manager OM-SIMOCODE for "totally integrated" in SIMATIC S7

SIMOCODE-DP can be integrated into SIMATIC S7 in two different ways:

- Conventionally via GSD files
i.e. integration in SIMATIC S7 is identical to integration in any other DP standard master system
- Via the OM-SIMOCODE-DP object manager i.e. SIMOCODE-DP becomes an integral component of STEP 7, the object manager OM-SIMOCODE-DP should, in this case, always be combined with the start-up and service software Win-SIMOCODE-DP/Professional
Both software packages must be installed on the PG/PC on which the hardware configuration of SIMATIC 57 is performed.
This ensures that Win-SIMOCODE-DP/Professional can be called up directly from HW-Config.
Parameter sets created with Win-SIMOCODE-DP/Professional are loaded into the STEP 7 data storage by means of OM and automatically transferred to SIMOCODE-DP during start-up.

Functions specific to SIMATIC S7, such as diagnostic and hardware interrupts are supported, which means easier S7-wide configuration as well as optimal performance in the transfer of diagnostic data.

Function block FB-SIMOCODE for "totally integrated" in PCS7

System-compatible integration into the PCS7 process control system requires the appropriate function blocks and faceplates for the respective field device.

The PCS7-FB SIMOCODE-DP supports standard processing of the SIMOCODE-DP-specific data in the application program of the automation system.
The faceplate (picture block) SIMOCODE-DP offers a standardized user interface for SIMOCODE-DP on the Operator Station of PCS7.
It is then easy to integrate SIMOCODE-DP into PCS7 and timesavings are achieved during configuration.

The Process Device Manager "PDM" supports centralized parameterization and diagnosis of all field devices on PROFIBUS DP or using the Hart protocol from the PC S7 Engineering Station.
SIMOCODE-DP is integrated into PDM via an appropriate device description. The functional scope corresponds to that of Win-SIMOCODE-DP, the user-interface is, however, uniform for all the different types of field devices.

Technical specifications
Shared data of basic unit, expansion module and operator module

Permissible ambient temperature in ${ }^{\circ} \mathrm{C}$	-25 ... +60
Permissible storage temperature in ${ }^{\circ} \mathrm{C}$	-40 ... +80
Installation altitude above sea-level in m	≤ 2000
Degree of protection acc. to IEC 60529	IP20 max. current setting $I_{e} \leq 100 \mathrm{~A}$; IPOO max. current setting $I_{e}>100 \mathrm{~A}$
Shock resistance (sine pulse)	$10 \mathrm{~g} / 5 \mathrm{~ms}$
Mounting position	Any
Mounting - max. current setting $\mathrm{I}_{\mathrm{e}} \leq 100 \mathrm{~A}$ - max. current setting $\mathrm{I}_{\mathrm{e}}>100 \mathrm{~A}$	Snap-on mounting onto 35 mm standard rail or screw mounting with push-in lugs. Screw mounting directly onto contactor or screw mounting
EMC interference immunity - Line-induced interference, burst to IEC 61000-4-4 - Line-induced interference, surge to IEC 61000-4-5 - Electrostatic discharge to IEC 61000-4-2 - Field-related interference to IEC 61000-4-3	2 kV (corresponds to degree of severity 3) 2 kV (corresponds to degree of severity 3) 8 kV (corresponds to degree of severity 3) $10 \mathrm{~V} / \mathrm{m}$ (corresponds to degree of severity 3)
EMC emitted interference	Emission limit class B to EN 55011
Safe isolation acc. to DIN VDE 0100 (IEC 60364), DIN VDE 0106, EN 50178 (product version 12 upwards, start of delivery 01/2000)	All circuits in SIMOCODE-DP are safely isolated from each other, they are designed with doubled creepage paths and clearances
	Power circuit from the control/electronic circuits: Safe isolation up to 690 V or 1000 V between control and electronic circuits
	One below the other: Safe isolation up to 300 V
	Observe notes of test report "Safe Isolation" No. 1610a.
Basic unit	
Displays - green LED "Ready" - green LED "Bus" - red LED "General Fault"	Continuous light: Ready Off: No control supply voltage" or "Function test not OK; device is disabled" Continuous light: "Bus operation" Continuous light/steady light: "Feeder fault", e.g. overload tripping
Test/Reset button	By pressing the Test/Reset button, the device can be reset following a trip or its functions can be tested
System interface	RS 232 for connecting the expansion module, control module or PC
PROFIBUS DP interface	RS 485 for connecting the PROFIBUS DP line via terminals (conductor cross-sections as for auxiliary contacts) or 9-pole SUB D socket

Main circuit

Rated insulation voltage $\boldsymbol{U}_{\boldsymbol{i}}$ (for pollution severity 3)

- For uninsulated conductors (3UF5 001 to 3UF5 021)
- For insulated conductors (3UF5 001 to 3UF5 021)

Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$

- 3UF5 $001 \ldots 3$ FF5 021 in kV

• 3UF5 $001 \ldots$ 3UF5 021	6
\bullet 3UF5 $031 \ldots$ 3UF5 051	8

| Rated frequency in Hz 50/60 |
| :--- | :--- |

Type of current	Three-phase		
Short-circuit protection	See table Short-circuit protection with fuses for motor feeders		
Diameter of feed-through openings (max. $I_{\mathrm{e}}=100 \mathrm{~A}$) in mm - Devices with max. operational current $I_{\mathrm{e}}=25 \mathrm{~A}$ - Devices with max. operational current $I_{\mathrm{e}}=100 \mathrm{~A}$ - Devices with max. operational current $I_{\mathrm{e}}>100 \mathrm{~A}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$ Construction with connecting bars		
Bar connection - Current range in A - Tightening torque in Nm - Solid with cable lug in mm^{2} - Stranded with cable lug in mm^{2}	$\begin{aligned} & 50 \ldots 205 \\ & \text { M 8: } 10 \ldots 14 \\ & 35 \ldots 95 \\ & 50 \ldots 120 \end{aligned}$	$\begin{aligned} & 125 \ldots 500 \\ & \text { M } 10: 14 \ldots 24 \\ & 50 \ldots 240 \\ & 70 \ldots 240 \end{aligned}$	$200 \ldots 820$ M 10: $14 \ldots 24$ M 12: $20 \ldots 35$ $50 \ldots 240$ $70 \ldots 240$

stranded with cable lug in mm^{2}

Rated control supply voltage $\boldsymbol{U}_{\text {s }}$	AC $50 / 60 \mathrm{~Hz} ; 115 \mathrm{~V}$ and 230 V	24 V DC
Operating range	AC $50 / 60 \mathrm{~Hz} ; 0.85$ to $1.1 \times \mathrm{U}_{\mathrm{s}}$	DC $24 \mathrm{~V} ; 0.85 \ldots 1.2 \times \mathrm{U}_{\mathrm{s}}$ (DIN 19240)
Power consumption	AC 50/60 Hz; 5 VA	DC $24 \mathrm{~V} ; 5 \mathrm{~W}$
Rated insulation voltage U_{i} in V	300 (at pollution degree 3)	
Rated impulse withstand voltage $U_{\text {imp }}$ in kV	4	
Outputs - Number - Auxiliary contacts of the 4 outputs - Specified short-circuit protection for auxiliary contacts (outputs)	4 monostable/bistable outputs depending on the variant NC contact response can be parameterized with internal signal conditioning, 3 outputs are jointly and 1 is separately connected to a common potential; they can be freely assigned to the control functions (e.g. for activating mains, star and delta contactors and for signaling the operating status) Fuse links, operational class gL/gA 6 A, quick-acting 10 A; circuit-breaker 1.6 A, C characteristic	
Continuous rated current in A	AC-15; 6 A/24 V; 6 A/120 V; 3 A/230 V DC-13; $2 \mathrm{~A} / 24 \mathrm{~V} ; 0.55 \mathrm{~A} / 60 \mathrm{~V} ; 0.25 \mathrm{~A} / 125 \mathrm{~V}$	
Rated operating current (switching capacity)		
Inputs	4 inputs, supplied by the device electronics (DC 24 V), jointly connected to a common potential, for injecting process signals such as local control points, key-operated switches or limit switches	
Thermistor motor protection (binary PTC thermistor) - Total cold resistance in $\mathrm{k} \Omega$ - Response threshold in $\mathrm{k} \Omega$ - Return value in $\mathrm{k} \Omega$	$\begin{aligned} & 1.5 \\ & 2.7 \ldots 3.1 \\ & 1.5 \ldots 1.65 \\ & \hline \end{aligned}$	
Conductor cross-sections - Tightening torque in Nm - Solid and stranded in mm^{2} - Solid with/without end sleeve in mm^{2}	$\begin{aligned} & 0.8 \ldots 1.2 \\ & 1 \times(0.5 \ldots 4.0) ; 2 \times(0.5 \ldots 2.5) \\ & 1 \times(0.5 \ldots 2.5) ; 2 \times(0.5 \ldots 1.5) \end{aligned}$	

Rated control supply voltage $\boldsymbol{U}_{\text {s }}$	AC $50 / 60 \mathrm{~Hz} ; 115 \mathrm{~V}$ and 230 V	24 V DC
Operating range	AC 50/60 Hz; 0.85 to $1.1 \times \mathrm{U}_{\mathrm{S}}$	DC $24 \mathrm{~V} ; 0.85 \ldots 1.2 \times \mathrm{U}_{\text {S }}$ (DIN 19240)
Power consumption	AC 50/60 Hz; 5 VA	DC $24 \mathrm{~V} ; 5 \mathrm{~W}$
Rated insulation voltage U_{i} in V	300 (at pollution degree 3)	
Rated impulse withstand voltage $U_{\text {imp }}$ in kV	4	
Outputs - Number - Auxiliary contacts of the 4 outputs - Specified short-circuit protection for auxiliary contacts (outputs)	4 monostable/bistable outputs depending on the variant NC contact response can be parameterized with internal signal conditioning, 3 outputs are jointly and 1 is separately connected to a common potential; they can be freely assigned to the control functions (e.g. for activating mains, star and delta contactors and for signaling the operating status) Fuse links, operational class gL/gA 6 A, quick-acting 10 A ; circuit-breaker 1.6 A, C characteristic	
Continuous rated current in A	5	
Rated operating current (switching capacity)	AC-15; 6 A/24 V; 6 A/120 V; 3 A/230 V DC-13; $2 \mathrm{~A} / 24 \mathrm{~V} ; 0.55 \mathrm{~A} / 60 \mathrm{~V} ; 0.25 \mathrm{~A} / 125 \mathrm{~V}$	
Inputs	4 inputs, supplied by the device electronics (DC 24 V), jointly connected to a common potential, for injecting process signals such as local control points, key-operated switches or limit switches	
Thermistor motor protection (binary PTC thermistor) - Total cold resistance in $\mathrm{k} \Omega$ - Response threshold in $\mathrm{k} \Omega$ - Return value in $\mathrm{k} \Omega$	$\begin{aligned} & 1.5 \\ & 2.7 \ldots 3.1 \\ & 1.5 \ldots 1.65 \\ & \hline \end{aligned}$	
Conductor cross-sections - Tightening torque in Nm - Solid and stranded in mm^{2} - Solid with/without end sleeve in mm^{2}	$\begin{aligned} & 0.8 \ldots 1.2 \\ & 1 \times(0.5 \ldots 4.0) ; 2 \times(0.5 \ldots 2.5) \\ & 1 \times(0.5 \ldots 2.5) ; 2 \times(0.5 \ldots 1.5) \end{aligned}$	

Outputs

- Number
- Auxiliary contacts of the 4 outputs

4 monostable/bistable outputs depending on the variant
NC contact response can be parameterized with internal signal conditioning, 3 outputs are jointly and 1 is separately connected to a common potential; they can be freely assigned to the control functions (e.g. for activating mains, star and delta contactors and for signaling the operating status)
Fuse links, operational class gL/gA 6 A, quick-acting 10 A ;
circuit-breaker 1.6 A, C characteristic

- Specified short-circuit protection for auxiliary contacts (outputs)

Continuous rated current in A	5
Rated operating current (switching capacity)	AC-15; 6 A/24 V; 6 A/120 V; 3 A/230 V DC-13; $2 \mathrm{~A} / 24 \mathrm{~V} ; 0.55 \mathrm{~A} / 60 \mathrm{~V} ; 0.25 \mathrm{~A} / 125 \mathrm{~V}$
Inputs	4 inputs, supplied by the device electronics (DC 24 V), jointly connected to a common potential, for injecting process signals such as local control points, key-operated switches or limit switches
Thermistor motor protection (binary PTC thermistor) - Total cold resistance in $\mathrm{k} \Omega$ - Response threshold in $\mathrm{k} \Omega$ - Return value in $\mathrm{k} \Omega$	$\begin{array}{ll} 1.5 \\ 2.7 & \ldots .1 \\ 1.5 \ldots & 1.65 \end{array}$
Conductor cross-sections - Tightening torque in Nm - Solid and stranded in mm^{2} - Solid with/without end sleeve in mm^{2}	$\begin{aligned} & 0.8 \ldots 1.2 \\ & 1 \times(0.5 \ldots 4.0) ; 2 \times(0.5 \ldots 2.5) \\ & 1 \times(0.5 \ldots 2.5) ; 2 \times(0.5 \ldots 1.5) \end{aligned}$
Expansion module	
System interface	RS 232 as connection to the basic unit and for connecting the control module or PC
Rated insulation voltage U_{i} in V	300 (at pollution degree 3)
Rated impulse withstand voltage $U_{\text {imp }}$ in kV	4
Outputs - Number - Auxiliary contacts of the 4 outputs - Specified short-circuit protection for auxiliary contacts (outputs)	4 bistable outputs Each with 1 floating NO contact, NC contact response can be parameterized via internal signal conditioning; 3 outputs jointly and 1 separately connected to common potential; they can be freely assigned to the control functions (e.g. for activating mains, star and delta contactors and signaling the operating status) Fuse links, operational class gL/gA 6 A, quick-acting 10 A; Circuit-breaker 1.6 A, C characteristic
Continuous rated current in A	5
Rated operating current (switching capacity)	AC-15; $6 \mathrm{~A} / 24 \mathrm{~V} ; 6 \mathrm{~A} / 120 \mathrm{~V} ; 3 \mathrm{~A} / 230 \mathrm{~V}$ DC-13; $2 \mathrm{~A} / 24 \mathrm{~V} ; 0.55 \mathrm{~A} / 60 \mathrm{~V} ; 0.25 \mathrm{~A} / 125 \mathrm{~V}$
Inputs	8 externally supplied DC 24 V, AC $115 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}$ jointly connected to a common potential, for injecting process signals such as local control points, key-operated switches or limit switches
Conductor cross-sections - Tightening torque in Nm - Solid and stranded in mm^{2} - Finely stranded with/without end sleeve in mm^{2}	$\begin{aligned} & 0.8 \ldots 1.2 \\ & 1 \times(0.5 \ldots 4.0) ; 2 \times(0.5 \ldots 2.5) \\ & 1 \times(0.5 \ldots 2.5) ; 2 \times(0.5 \ldots 1.5) \end{aligned}$

Expansion module

Motor Management Systems

SIMOCODE-DP motor protection and

control devices

Control module

Displays

- green LED "Ready"
- red LED "General Fault"
- 3 green and 3 yellow LEDs

Off: "No control supply voltage" or "Function test not OK; device is disabled" Continuous light/steady light: "Feeder fault", e.g. overload tripping
Feeder-specific displays, freely-assignable, e.g. manual/automatic mode, tripping of thermistor protection, clockwise/counterclockwise rotation etc.

Buttons

- Test/Reset

By pressing the Test/Reset button, the device can be reset following a trip or its functions can be tested

- Control keys

For controlling the motor feeder, freely programmable

- System interface

RS 232 as connection to the basic unit or expansion module and for connection to a PC

Short-circuit protection with fuses for motor feeders with short-circuit currents up to 50 kA at 690 V for 3RB1 2 and 3UF5 0, Part 1

Overload relay	Contactor	CLASS														
		5 and 10			15			20			25			30		
		Rated operational current $I_{\mathrm{e}} \mathrm{AC}-3$ in A at ... V														
		400	500	690	400	500	690	400	500	690	400	500	690	400	500	690
Adjustment range 1.25 to 6.3 A																
3UF5 00	3RT1 015	6.3	5	4	6.3	5	4	6.3	5	4	6.3	5	4	6.3	5	4
	3RT1 016	6.3	6.3	5.2	6.3	6.3	5.2	6.3	6.3	5.2	6.3	6.3	5.2	6.3	6.3	5.2
	3RT1 017	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3

Adjustment range 6.3 to 25 A

3UF5 01	3RT1 015	7			7			7			7			7		
	3RT1 016	9	6.5		9	6.5		9	6.5		9	6.5		9	6.5	
	3RT1 017	12	9	6.3	11	9	6.3	10	9	6.3	9.5	9	6.3	9	9	6.3
	3RT10 24	12	12	9	12	12	9	12	12	9	12	12	9	12	12	9
	3RT10 25	17	17	13	17	17	13	16	16	13	15	15	13	14	14	13
	3RT10 26	25	18	13	18	18	13	16	16	13	15	15	13	14	14	13
	3RT10 34	25	25	20	25	25	20	22.3	22.3	20	20.3	20.3	20.3	19.1	19.1	19.1
	3RT10 35	25	25	24	25	25	24	25	25	24	25	25	24	25	25	24

Adjustment range 25 to 100 A

3UF5 02	3RT10 34	32	32	20	25.5	25.5	20	22.3	22.3	20	20.3	20.3	20	19.1	19.1	19.1
	3RT10 35	40	40	24	33	33	24	29.4	29.4	24	28	28	24	26.5	26.5	24
	3RT10 36	50	50	24	38.5	38.5	24	32.7	32.7	24	29.4	29.4	24	26.5	26.5	24
	3RT10 44	65	65	47	56	56	47	49	49	47	45	45	45	41.7	41.7	41.7
	3RT10 45	80	80	58	61	61	58	53	53	53	47	47	47	45	45	45
	3RT10 46	95	95	58	69	69	58	59	59	58	53	53	53	50	50	50

Adjustment range 50 to 205 A

| 3UF5 03 | 3RT10 54 | 115 | 115 | 115 | 93 | 93 | 93 | 82 | 82 | 82 | 75 | 75 | 75 | 69 | 69 | 69 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 3RT10 55 150 | 150 | 150 | 122 | 122 | 122 | 107 | 107 | 107 | 98 | 98 | 98 | 90 | 90 | 90 | 111 |
| | 3RT10 56 | 185 | 185 | 170 | 150 | 150 | 150 | 131 | 131 | 131 | 120 | 120 | 120 | 111 | 111 | 111 |

Adjustment range 125 to 500 A

3UF5 04	3RT10 64	225	225	225	182	182	182	160	160	160	146	146	146	135	135	135
	3RT10 65	265	265	265	215	215	215	188	188	188	172	172	172	159	159	159
	3RT10 66	300	300	280	243	243	243	213	213	213	195	195	195	180	180	180
	3RT10 75	400	400	400	324	324	324	284	284	284	260	260	260	240	240	240
	3RT10 76	500	500	450	405	405	405	355	355	355	325	325	325	300	300	300
	3RT12 64	225	225	225	225	225	225	225	225	225	194	194	194	173	173	173
	3RT12 65	265	265	265	265	265	265	265	265	265	228	228	228	204	204	204
	3RT12 66	300	300	300	300	300	300	300	300	300	258	258	258	231	231	231
	3RT12 75	400	400	400	400	400	400	400	400	400	344	344	344	308	308	308
	3RT12 76	500	500	500	500	500	500	500	500	500	430	430	430	385	385	385

Adjustment range 200 to 820 A

3UF5 05	3TF68 ${ }^{1)}$	630	630	630	502	502	502	440	440	440	408	408	408	376	376	376
	3TF69 ${ }^{1)}$	820	820	820	662	662	662	572	572	572	531	531	531	500	500	500

1) Contactors mountable.
2) Pay attention to operating voltage.
3) Type of coordination and short-circuit protection devices according to IEC 60947-4-1/DIN VDE 660 Part 102:

- Type of coordination "1": In the event of a short-circuit, the contactor or starter must not endanger persons or the installation. They do not have to be suitable for further operation without repair and the renewal of parts.

Motor Management Systems

SIMOCODE-DP motor protection and control devices

Short-circuit protection with fuses for motor feeders with short-circuit currents up to 50 kA at 690 V for 3RB1 2 and 3UF5 0, Part 2

Adjustment range 25 to 100 A

3UF5 02	3RT10 34	125	63	50	63	125
	3RT10 35	125	63	50	80	160
	3RT10 36	160	80	50	80	200
	3RT10 44	250	125	63	125	250
	3RT10 45	250	160	80	160	250
	3RT10 46	250	160	100	160	350
Adjustment range 50 to 205 A						
3UF5 03	3RT10 54	355	315	160	250	450
	3RT10 55	355	315	200	315	500
	3RT10 56	355	315	200	315	500
Adjustment range 125 to 500 A						
3UF5 04	3RT10 64	500	400	250	400	700
	3RT10 65	500	400	315	400	700
	3RT10 66	500	400	315	400	700
	3RT10 75	630	400	400	450	1000
	3RT10 76	630	500	500	500	1200
	3RT12 64	500	500	400	450	800
	3RT12 65	500	500	400	450	800
	3RT12 66	500	500	400	450	800
	3RT12 75	800	800	630	800	1200
	3RT12 76	800	800	630	800	1200
Adjustment range 200 to 820 A						
3UF5 05	3TF68 ${ }^{1)}$	1000	$500^{4)}$	630	500	1200
	3TF69 ${ }^{1 /}$	1250	$630^{4)}$	630	630	2000 CLASS L

- Type of coordination "2": In the event of a short-circuit, the contactor or starter must not endanger persons or the installation. They must be suitable for further operation. There is a danger of contact welding.

4) Ensure that the maximum AC-3 operating current is sufficiently different from the rated fuse current.

Motor Management Systems

SIMOCODE－DP motor protection and

control devices
Selection and ordering data

Version	DT Order No．	PS＊ Weight perPU approx．
kg		

Basic unit

4 inputs， 4 outputs
for snap－on mounting onto 35 mm standard mounting rail to EN 50022

Contactors that can be mounted externally	Width	Adjustment range
Type	mm	A

Type	mm	A $\ldots{ }^{11} \ldots 6.3$
-	70	$1.21^{\ldots} .3$
-	70	$6.3^{\ldots} 25$
-	70	$25 \ldots 100$

C 3UF5 001－3ㅁㅁㅁㅁㅇ
C 3UF5 011－3ロロロ0－1 1 unit 0.800

3UF5 001 ．．． 021

3RT1 05	120	50 ．．． 205	C	3UF5 031－3ロロロ0－1	1 unit	1.640
3RT1 06，3RT1 07 3RT1 26，3RT1 27	145	$125 . . .500$	C	3UF5 041－3ロロロ0－1	1 unit	2.420
3TF6 8，3TF6 9	230	$200 . . .820$	C	3UF5 051－3 $\square \square \square 0-1$	1 unit	4.330
Inputs						
Input for thermistor motor protection				A		
Ground－fault detection input（external） （sensing of ground fault currents of sizes $0.3 \mathrm{~A}, 0.5 \mathrm{~A}$ and 1 A with sum－ mation current transformers 3UL2 20．－A，see Section 5， Protective Devices：Overload Relays $->$ SIRIUS Overload Relays $->$ SIRIUS Solid－State Overload Relays－＞Accessories）				B		
Rated control voltage						
24 V DC				B		
115 V AC				J		
230 V AC				N		
Behavior of the outputs in case of control supply voltage failure				0		
Monostable						
Bistable				1		

[^4]

1) Start of delivery, please enquire.

Motor Management Systems

SIMOCODE-DP motor protection and

control devices

SIMOCODE-DP motor protection and control devices

Motor Management Systems

SIMOCODE-DP motor protection and

control devices

Characteristics

Tripping characteristic for 3-pole loading

The current-time curves for 3-pole symmetrical load show the relationship between the release time from cold and multiples of the operational current.
If the device is pre-loaded with 100% of the current setting, the tripping times are reduced.
Tripping characteristic for 2-pole loading

In the case of 2-pole loading (failure of one phase) or current unbalance $>40 \%$ of the current setting, the tripping times are reduced, because the heat generated due to the unbalanced loading of the motor rises.

Dimension drawings
3UF5 001, 3UF5 011 and 3UF5 021 basic units

	a	b	c	d	e	f
3UF50 01	10	34	29	46	-	-
3UF50 11	10	34	29	46	48	4
3UF50 21	15	29	24	47	48	4

3UF5 031, 3UF5 041 and 3UF5 051 basic units

	a	b	c	d	e	f	g	h
3UF5031	120	85	155	110	40	$\varnothing 7$	42	37
3UF5041	145	85	175	105	50	$\varnothing 9$	52	48
3UF5051	230	85	190	120	70	$\varnothing 11$	70	-

	i	j	k	l	m	n	o	p
3UF5 031	125	41	20	131	7,2	13	145	4
3UF5 041	130	46	30	151	7,2	-	160	6
3UF5 051	135	55	40	166	7,2	-	175	8

Circuit diagrams

Reversing starter circuit with SIMOCODE-DP

-M1

Further circuit diagrams for the control functions overload, direct online starter, star-delta starter, pole reversing, Dahlander polechanging circuit, solenoid valve, gate valve (servo drive) and SIKOSTART 3RW2 2 and a configuration example are included in the 3UF5 7 system manual.

Motor Management Systems

SIMOCODE-DP motor protection and
control devices

Further information

System manual

For selection of equipment and for planning, it is recommended that the 3UF5 7 system manual is consulted (see Selection and ordering data page $3 / 88$).
CD-ROM "SIMOCODE-DP, Intelligence at the Field Level"
Concise introduction to the system landscape of SIMOCODEDP, including 3UF57 manual, Win-SIMOCODE-DP/Smart demo parameterization software, example circuit diagrams, etc.
(Order No. E2001-D1140-P21S-X-7400)

Configuration course

Two-day configuration course for SIMOCODE-DP (device spectrum, functions, communications capability, practical exercises).
For further details and registration, please contact:

- Tel: +49 (9131) 7-2 7972
- Fax:+49 (9131) 7-2 8172

Internet

You can find further information on the Internet at:
www.siemens.de/simocode-dp

Motor Management Systems

Current transformers for overload protection

Overview

The 3UF1 8 current transformers are protection transformers and are used for actuating overload relays. Protection transformers are designed to ensure proportional current transfer up to a multiple of the primary rated current.

The 3UF1 8 current transformers convert the maximum current of the corresponding operating range into the standard signal 1 A secondary.

Technical specifications

Climatic environmental conditions

Ambient temperature in ${ }^{\circ} \mathrm{C}$

- Operation
$25 \ldots+60$
- Storage/transport
$-40 \ldots+85$
Temperature change in ${ }^{\circ} \mathrm{C} / \mathrm{h}$
- Operation
max. 10
- Storage/transport
max. 20
Relative humidity in \%
15 ... 95 (indoor, acc. to DIN 40040, no condensation)
Air pressure in hPa
- Operation 860 ... 1060
- Storage/transport 650 ... 1060

Contaminants in ppm

- $\mathrm{SO}_{2} \quad 0.5$ (relative humidity $\leq 60 \%$, no condensation)
- $\mathrm{H}_{2} \mathrm{~S}$
0.1 (relative humidity $\leq 60 \%$, no condensation)

Mechanical environmental conditions

Vibrations in Hz acc. to IEC 60068-2-6	10... 57 (for constant amplitude 0.15 nm) 57 ... 150 (for constant acceleration 2 g)							
Shock to IEC 60068-2-27	12 shocks (half sine $15 \mathrm{~g} / 11 \mathrm{~ms}$)							
Requirements acc. to IEC, DIN and VDE								
Degree of protection to IEC 60529	IP20							
Rated insulation voltage in V acc.to IEC 60664	690/1000 (type-dependent)							
Rating of the insulation in V (to UL/CSA)	600							
Trip class acc. to IEC 60947-4-1	suitable from CLASS 5 to CLASS 30							
Power loss per conducting path of the transformers	Operating range		for setting ...					
			$m W(m V A)$			mW (mVA)		
- 3UF1 845	12.5 ... 50		33 (38)			570 (650)		
- 3UF1 848	$25 . . .100$		110 (120)			1700 (1900)		
- 3UF1 850	$32 . .130$		135 (150)			2400 (2700)		
-3UF1 852	50 ... 200		170 (190)			2600 (2900)		
- 3UF1 856	$100 . . .400$		450 (500)			6500 (7000)		
- 3UF1 857	$125 . .500$		850 (940)			13000 (15000)		
- 3UF1 868-3F	160 ... 630		900 (1000)			17000 (19000)		
- 3UF1 868-3G	205 ... 820		1400 (1600)			22000 (25000)		
Conductor cross-sections (one or two conductors connectable)	Current transformers							
	on second ary side	on primary side						
		3UF1 845	3UF1 848 ${ }^{1)}$	3UF1 850 ${ }^{\text {1) }}$	3UF1 852	3UF1 856 3UF1 857	$\begin{aligned} & \text { 3UF1 868- } \\ & \text { 3FA002) } \end{aligned}$	$\begin{aligned} & \text { 3UF1 868- } \\ & 3 \mathrm{GAOO} 0^{2} \text {) } \end{aligned}$
- Terminal screw	M 3.5	For con.	For con.	For con.	M 8	M 10	M 10	M 12
- Solid in mm^{2}	$\begin{aligned} & 2 \times \\ & 1.5 \ldots 2.5 \end{aligned}$	data see 3RT con-	data see 3RT con-	data see 3RT con-	-		-	-
- Stranded in mm^{2}	$\begin{aligned} & 2 \times \\ & 1.5 \ldots 2.5 \end{aligned}$	tactors in Part 2	tactors in Part 2	tactors in Part 2	-		-	-
- Finely stranded without end sleeve in mm^{2}					-		-	-
- Finely stranded with end sleeve in mm^{2}	2×1.5							-
- Finely stranded with cable lug in mm^{2}	-				$35 . . .95$	$50 . . .240^{3)}$	$50 . .240$	185 ... 240
- Stranded with cable lug in mm^{2}	-				50 ... 120	$70 . . .240^{3)}$	$70 . .240$	185 ... 240
- Connecting bars in mm					20×4	$\begin{aligned} & 25 \times 6.30 \times \\ & 6 \end{aligned}$	30×5	50×5
- Tightening torque in Nm	0.8 ... 1.4				10... 14	$14 . .24$	$14 \ldots 24$	$14 \ldots 24$
- Tightening torque in lb.in	$7 \ldots 12$				$89 . . .124$	$124 . .210$	$124 \ldots 210$	$124 \ldots 210$

1) With or without box terminal.
2) Conductor cross-sections for box terminals, see 3TF68 and 3TF69 contactors in section contactors and contactor combinations.
3) With max. conductor cross-section, a terminal cover for maintaining the phase spacing is required.

Motor Management Systems

Current transformers for overload protection

Short-circuit protection with fuses for motor feeders for short-circuit currents up to 50 kA at $690 \mathrm{~V}^{4)}, 50 / 60 \mathrm{~Hz}$

Overload relay	Contactor	Rated operational current AC-3 in A at 400 V and CLASS ...					Type of coordination ${ }^{2)}$			
		5 and 10	15	20	25	30	$1 \quad 2$Fuse links in $A^{1)}$			
							NH, Type 3NA DIAZED, Type 5SB NEOZED, Type 5SE gL/gG		Type 3ND, aM	British Standards
										BS88 fuses
Operating range 0.25 to 2.5 A										
3UF1 843-1BA00	3RT1 015	2.5	2.5	2.5	2.5	2.5	25	10	-	-
Operating range 1.25 to 12.5 A										
3UF1 843-1AA00	3RT1 015	7	7	7	7	7	25	10	-	-
	3RT1 016	9	9	9	9	9	25	10	-	-
	3RT1 017	12	11	10	9.5	9	25	10	-	-
	3RT1 024	12	12	12	12	12	35	16	20	35
	3RT1 025	12.5	12.5	12.5	12.5	12.5	35	16	20	35

Operating range 2.5 to 25 A

3UF1 843-2BA00	3RT1 015	7	7	7	7	7	25	10	-	-
	3RT1 016	9	9	9	9	9	25	10	-	-
	3RT1 017	12	11	10	9.5	9	25	10	-	-
	3RT1 024	12	12	12	12	12	63	25	20	35
	3RT1 025	17	17	16	15	14	63	25	20	35
	3RT1 026	25	18	16	15	14	63	25	35	50
	3RT1 034	-	25	22.3	20.3	19.1	63	25	-	-
	3RT1 035	-	-	25	25	25	63	25	-	-

3UF1 845-2CA00	3RT1 025	17	17	16	15	14	63	25	20	35
	3RT1 026	25	18	16	15	14	100	35	35	50
	3RT1 034	32	25.5	22.3	20.3	19.1	100	63	-	-
	3RT1 035	40	33	29.4	28	26.5	100	63	-	-
	3RT1 036	50	38.5	32.7	29.4	26.5	100	80	-	-
	3RT1 044	-	50	49	45	41.7	100	80	-	-
	3RT1 045	-	-	50	47	45	100	80	-	-
	3RT1 046	-	-	-	50	50	100	80	-	-

Operating range 16 to 65 A

3UF1 847-2DA00	3RT1 034	32	25.5	22.3	20.3	19.1	125	63	-	-
	3RT1 035	40	33	29.4	28	26.5	125	63	-	-
	3RT1 036	50	38.5	32.7	29.4	26.5	160	80	-	-
	3RT1 044	65	56	49	45	41.7	160	125	-	-
	3RT1 045	65	61	53	47	45	160	125	-	-
	3RT1 046	-	65	59	53	50	160	125	-	-
	3TF5 0	65	65	65	65	65	160	125	80	100

1) Pay attention to operating voltage.
2) Type of coordination and short-circuit protection devices according to

IEC 60947-4-1/VDE 660 Part 102:

- Type of coordination 1

In the event of a short-circuit, persons and equipment must not be
endangered by the contactor or starter.
They do not have to be suitable for further operation without repair and the renewal of parts.

- Type of coordination 2

In the event of a short-circuit, persons and equipment must not be
in danger from the contactor or starter.
These must be suitable for subsequent operation.
There is a danger of contact welding
3) Operating range $+5 \%$.

Motor Management Systems

Current transformers for overload protection

Overload relay	Contactor	Rated operating current AC-3 in A at 400 V and CLASS ...					Type of coordination ${ }^{2)}$			
		5 and 10	15	20	25	30	12 Fuse links in $A^{1)}$ NH, Type 3NA DIAZED, Type 5SB NEOZED, Type 5SE gL/gG		Type 3ND, aM	British Standards BS88 fuses
Operating range 25 to 100 A										
3UF1 848 -2EA00	3RT1 044	65	65	49	45	41.7	250	125	-	-
	3RT1 045	80	61	53	47	45	250	160	-	-
	3RT1 046	95	69	59	53	50	250	160	-	-
	3RT1 054	100	93	82	75	69	250	160	125	125
	3RT1 055	-	100	100	98	90	250	160	125	125
	3RT1 056	-	-	-	100	100	250	160	125	125
Operating range 32 to 130 A										
3UF1 850-3AA00	3RT1 044	65	56	49	45	41.7	250	125	-	-
	3RT1 045	80	61	53	47	45	250	160	-	-
	3RT1 046	95	69	59	53	50	250	160	-	
	3RT1 054	115	93	82	75	69	315	224	160	160
	3RT1 055	130	122	107	98	90	315	224	160	160
	3RT1 056	-	130	130	120	111	315	224	160	160
	3RT1 064	-	-	-	130	130	315	224	160	160
Operating range 50 to 200 A										
3UF1 852-3BA00	3RT1 054	115	93	82	75	69	355	224	160	160
	3RT1 055	150	122	107	98	90	355	224	160	200
	3RT1 056	185	150	131	120	111	355	224	160	200
	3RT1 064	200	182	160	146	135	355	224	160	200
	3RT1 065	-	200	188	172	159	355	224	160	200
	3RT1 066	-	-	200	195	180	355	224	160	200
	3RT1 075	-	-	-	200	200	355	224	160	200

1) Pay attention to operating voltage.
2) Type of coordination and short-circuit protection devices according to

IEC 60947-4-1/VDE 660 Part 102:

- Type of coordination 1

In the event of a short-circuit, persons and equipment must not be in danger from the contactor or starter.
They do not have to be suitable for further operation without repair and the renewal of parts.

- Type of coordination 2

In the event of a short-circuit, persons and equipment must not be in
danger from the contactor or starter.
These must be suitable for subsequent operation.
There is a danger of contact welding.

Motor Management Systems

Current transformers for overload protection

Overload relay	Contactor	Rated operating current AC-3 in A at 400 V and CLASS .					Type of coordination ${ }^{2)}$			
		5 and 10	15	20	25	30	12 Fuse links in $A^{1)}$			
							NH, Type 3NA DIAZED, Type 5SB NEOZED, Type 5SE gL/gG		Type 3ND, aM	British Standards
										BS88 fuses
Operating range 63 to 250 A										
3UF1 854-3CA00	3RT1 056	185	150	131	120	111	355	250	160	200
	3RT1 064	225	182	160	146	135	400	250	250	355
	3RT1 065	250	215	188	172	159	500	400	315	355
	3RT1 066	-	243	213	195	180	500	400	315	355
	3RT1 075	-	250	250	250	240	500	400	400	355
	3RT1 076	-	-	-	-	250	500	400	400	355
Operating range 100 to 400 A										
3UF1 856-3DA00	3RT1 065	265	215	188	172	159	500	400	315	400
	3RT1 066	300	243	213	195	180	500	400	315	400
	3RT1 075	400	324	284	260	240	630	500	400	450
	3RT1 076	-	400	355	325	300	630	500	500	450
	3TF6 8	-	-	400	400	400	800	500	630	450
Operating range 125 to 500 A										
3UF1 857-3EA00	3RT1 066	300	243	213	195	180	500	400	315	400
	3RT1 075	400	324	284	260	240	800	500	400	450
	3RT1 076	500	405	355	325	300	800	500	500	450
	3TF6 8	-	500	500	479	441	800	500	630	450
	3TF6 9	-	-	-	500	500	800	500	630	450
Operating range 160 to 630 A										
3UF1 868-3FA00	3RT1 075	400	324	284	260	240	800	500	400	450
	3RT1 076	500	405	355	325	300	800	500	500	450
	3TF6 8	630	630	536	479	441	1000	500	630	450
	3TF6 9	-	-	-	531	500	1000	500	630	450
Operating range 200 to 820 A										
3UF1 869-3GA00	3TF6 8	630	630	536	479	441	1000	500	630	450
	3TF6 9	820	662	572	531	500	1000	500	630	450

1) Pay attention to operating voltage.
2) Type of coordination and short-circuit protection devices according to IEC 60947-4-1/VDE 660 Part 102:

- Type of coordination 1

In the event of a short-circuit, persons and equipment must not be in danger from the contactor or starter.
They do not have to be suitable for further operation without repair and the renewal of parts.

- Type of coordination 2

In the event of a short-circuit, persons and equipment must not be in danger from the contactor or starter
These must be suitable for subsequent operation.
There is a danger of contact welding.

Selection and ordering data

	Version	DT	Order No.	PS*	Weight per PU approx
					kg
Current transformers for stand-alone installation					
C-7 ${ }^{-1}$	for snap-on and screw mounting, suitable for snapping on to 35 mm standard mounting rails accord. to EN 50022				
$\triangle \varnothing \square$	Operating range				
	A				
	$0.25 \ldots 2.5^{1)}$	A	3UF1 843-1BA00	1 unit	0.488
	$1.25 \ldots 12.5{ }^{1)}$	D	3UF1 843-2AA00	1 unit	0.485
	$2.5 \ldots 25^{\text {1) }}$	D	3UF1 843-2BA00	1 unit	0.490
864	12.5 ... 50	D	3UF1 845-2CA00	1 unit	0.694
	$16 . . .65$	D	3UF1 847-2DA00	1 unit	1.180
3UF1 843	25 ... 100	D	3UF1 848-2EA00	1 unit	1.230

Current transformers for mounting on contactors and stand-alone installation

	for screw mounting				
	Operating range				
- 19\%	A				
tre	$32 . . .130$	D	3UF1 850-3AA00	1 unit	1.740
\% 6.	50 ... 200	D	3UF1 852-3BA00	1 unit	1.890
\cdots	63 ... 250	D	3UF1 854-3CA00	1 unit	3.610
3UF1 868	$100 . .400$	D	3UF1 856-3DA00	1 unit	3.850
	125 ... 500	D	3UF1 857-3EA00	1 unit	4.130
	160 ... 630	D	3UF1 868-3FA00	1 unit	7.780
	205... 820	D	3UF1 868-3GA00	1 unit	8.920

Terminal covers

for converter/contactor combinations and stand-alone mounting for converters with and without box terminals
(cover required per connection side)
3UF1 845

3UF1 848

	3TX7 446-0A	1 unit	0.006
B	3TX7 466-0A	1 unit	0.035
B	3TX7 506-0A	1 unit	0.044
B	3TX7 536-0A	2 units	0.112
B	3TX7 686-0A	1 set	0.410
B	3TX7 696-0A	1 set	0.402
		1 unit	0.013
3TX7 466-0B	1 unit	0.019	
3TX7 506-0B	1 unit	0.055	
B	3TX7 536-0B	1 unit	0.085
B	3TX7 686-0B	1 unit	0.103
	3TX7 696-0B		

Box terminal blocks
3UF1 850, 3UF1 852
3UF1 868
3UF1 868-3FA00
\square

3UF1 868-3GA00
for covering the screw connection for direct mounting on contactor (one cover required per contactor/converter combination)
3UF1 848
3UF1 850, 3UF1 852
3UF1 854 ... 3UF1 857
3UF1 868-3FA00
3UF1 868-3GA00

for stand-alone installation

3UF1 847, 3UF1 848

$$
\text { 3UF1 } 850
$$

1) The following adjustment ranges for the protection of EEx e motors are applicable:
3UF1 843-1BA00, $0.25 \ldots 1.25 \mathrm{~A}$
3UF1 843-2AA00, 1.25 … 6.3 A
3UF1 843-2BA00, 2.5 ... 12.5 A

Note: Application in the SIMOCODE-DP system when using the control functions pole reversal and Dahlander circuit. Please note the configuring aids in the 3UF5 7 system manual.

Motor Management Systems

Current transformers for overload protection

Dimension drawings

3UF1 843 current transformer

2) For snap-on mounting onto standard rails to

DIN EN 50 022-35 x 7,5 or DIN EN 50 022-35 $\times 15$

3UF1 845 current transformer

for individual mounting: for snap-on and screw mounting, suitable for snapping on to 35 mm standard mounting rails acc. to EN 50022

1) Clearance to earthed parts.
2) For snap-on mounting onto standard rails to DIN EN 50 022-35 x 7,5 or DIN EN 50 022-35 x 15 .

3UF1 847 to 3UF1 852 current transformers

for snap-on mounting on 75 mm standard mounting rails acc. to EN 50023 with base plate

Current transformers	3UF1 847, 3UF1 848	3UF1 850-0JA00	3UF1 852-0JA00
Base plate	3UF1 900-0KA00	3UF1 900-0JA00 (for snap-on mounting only)	3UF1 900-0JA00 (for snap-on mounting only)
Box terminal block	3TX7 460-0E	3TX7 500-0E	-
Additional cover	3TX7 466-0A	3TX7 506-0A	3TX7 506-0A

(1) Additional cover, can be shortened
(2) Box terminal block

Transformers	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r
3UF1847, 3UF1848	26,5	25	50	82	111	122	10,5	90	46	90	105	35	62	89	-	19	$\varnothing 6,2$	$\varnothing 5,8(\mathrm{M} 5)$
3UF1850	37																	

3UF1 854 to 3UF1 857 current transformers

Transformers	i	j
3UF18 54	48	25
3UF18 56		
3UF18 57	52	30

Motor Management Systems

Current transformers for overload protection
3UF1 868-3FA00, 3UF1 868-3GA00 current transformers
for 3TF6 8 contactors

Transformers	Contactors	a	b	c	d	e	f	g
3UF18 68-3FA00	3TF68	390	398	30	5	145	175	420
3UF18 68-3GA00	3TF68	410	408	40	8	155	195	450

General data

Overview

The compact, user-friendly, and low-cost solution for simple control tasks

- Compact, user-friendly, can be used universally without accessories.
- "All in one": the display and operator panel are integrated.
- 34 different functions can be linked at a press of a button or with PC software; up to 130 times in total
- Functions can be changed simply via buttons; no complicated rewiring

Area of application

The LOGO! logic module is the user-friendly, low-cost solution for simple control tasks.

LOGO! is universally applicable, e.g.:

- Building installation and wiring (lighting, shutters, awnings, doors, access control, barriers, ventilation systems, etc.)
- Controlgear cubicle installation
- Machine and device construction (pumps, small presses, compressors, hydraulic lifts, conveyors ...)
- Special controls for conservatories and greenhouses
- Signal preprocessing for other controllers

The LOGO! Modular logic modules can be expanded easily for each application.

Marine approvals

American Bureau of Shipping, Bureau Veritas, Det Norske Veritas, Germanischer Lloyd, Lloyds Register of Shipping, Polski Rejestr Statków

Design

LOGO! The modular design is available in different variants for different supply voltages (DC 12 V , DC 24 V ; AC 24 V , DC 115/230 V, AC 115/230 V):

- Basic variants
- Low-cost pure variants without operator control and display panels
The LOGO! variants have the following distinguishing characteristics:
-R: Relay output
- C: Clock/time switch
- o: Without display

LOGO! is simple

- Operator control panel and front panel in one unit; no other tools are necessary
- Non-volatile storage of control program and setpoints (e.g. times) in integrated EEPROM

LOGO! is space-saving

- e. g. LOGO! 230RC: $72 \times 90 \times 55 \mathrm{~mm}(W \times H \times D)$
- Fitted mounting in the distribution box (same mounting dimensions as the ground-fault circuit interrupter)
LOGO! offers maximum flexibility and is universal
- Expandability;
depending on the application, additional expansion modules can be connected.

LOGO! is communication-capable

- Optional communication modules support interfacing to AS-Interface and instabus EIB networks

Functions

LOGO! is "All in one"
The display and operator panel are integrated. It is compact, easy to use, low cost and can be used universally without the need for any accessories. 34 different functions can be used in each LOGO! They are simply linked by pressing a button or by means of PC software. It is therefore possible to adapt it to changes quickly in the future without the need for expensive rewiring.

LOGO! is simple

- Integrated basic functions (e.g. AND, OR) and special functions (e.g. timers, counters, latching relay) of the electronics
- Program generation simply by combining stored functions at the press of a key or PC software
- Easy-to-use and simple duplication of the control program with an optional program module

LOGO! offers maximum flexibility and is universal

- Easy modification by reconnecting the functions at a press of a key; no need for time-consuming rewiring
- Optional operation from the PC; For creating, simulating, online testing, and archiving the control program on the PC, including documentation facility

LOGO! Logic Modules

LOGO! modular basic variants

Overview

The space-saving basic variants

- With interface for connecting extension modules

Design

- Relay outputs with up to 10 A output current (not LOGO! 24)
- Integrated front panel with background illumination (4×12 characters)
- Integrated operator control panel
- Integrated basic and special functions
- Integrated EEPROM for storing control program and setpoints
- Optional programming module
- Integrated clock with automatic summertime/wintertime changeover (not LOGO! 24)
- 130 function blocks can be combined
- 8 digital inputs, 4 digital outputs
- 2 inputs as analog inputs for DC 12/24 V versions (0 to 10 V); inputs can also be used as digitally
- 2 inputs for counting up to 2 kHz can be used (for DC variants only)
- Interface for connecting expansion modules, max. 24 digital inputs, 16 digital outputs and 8 analog inputs can be addressed

Functions

- Basic functions:
- AND, OR, NOT, NAND, NOR, XOR
- Positive/negative edge evaluation
- Special functions:
- ON delay
- Latching ON delay
- OFF delay
- Pulse relay
- Latching relay
- Clock-pulse relay
- Counter (forward/backward)
- Time switch
- Interval time-delay relay
- Working hour meter
- Threshold switch
- Asynchronous pulse encoder
- Yearly timer switch
- Easy-to-use switch function
- Random generator
- Staircase lighting function acc. to DIN 18015-2
- Edge-triggered interval time-delay relay
- Combined ON/OFF delay
- Analog comparator
- Analog threshold switch
- Analog delta threshold switch
- Analog watchdog
- Analog amplifier
- Text and variable display
- Shift register
- Softkey function
- 24 flags (including start-up flag)
- Integrated retentivity
- Password protection

Optional functions

- Additional know-how protection with the optional program module

LOGO! Logic Modules

LOGO! modular basic variants
Selection and ordering data

Version	DT	Order No.	PS*	Weight per PU approx.
				kg
LOGO! logic module 24 Supply voltage DC 24 V 8 digital inputs DC 24 V , of which 2 can be used as analog inputs (0 to 10 V), 4 digital outputs DC $24 \mathrm{~V}, 0.3 \mathrm{~A}$; 130 function blocks can be combined, modular expandability	A	6ED1 052-1CC00-0BA4	1 unit	0.189
LOGO! logic module 12/24RC Supply voltage DC $12 / 24 \mathrm{~V}$, 8 digital inputs DC $12 / 24 \mathrm{~V}$, of which 2 can be used as analog inputs (0 to 10 V), 4 relay outputs 10 A , Integrated time switch; 130 function blocks can be combined, modular expandability	A	6ED1 052-1MD00-0BA4	1 unit	0.220
LOGO! logic module 24RC Supply voltage AC/DC 24 V , 8 digital inputs AC/DC 24 V , 4 relay outputs 10 A , Integrated time switch; 130 function blocks can be combined, modular expandability	A	6ED1 052-1HB00-0BA4	1 unit	0.228
LOGO! logic module 230RC Supply voltage AC/DC 115/230 V, 8 digital inputs AC/DC 115/230 V, 4 relay outputs 10 A , integrated time switch; 130 function blocks can be combined, modular expandability	A	6ED1 052-1FB00-0BA4	1 unit	0.232

Accessories				
LOGO! Manual - German - English - French - Spanish - Italian	A A \times X X	6ED1 050-1AA00-0AE5 6ED1 050-1AA00-0BE5 6ED1 050-1AA00-0CE5 6ED1 050-1AA00-0DE5 6ED1 050-1AA00-0EE5	1 unit 1 unit 1 unit 1 unit 1 unit	0.353 0.359 0.353 0.353 0.353
LOGO! Memory card for copying with know-how protection	A	6ED1 056-5CA00-0BA0	1 unit	0.003
LOGO! Soft Comfort V4.0 for programming on the PC in LAD/FBD; runs on Windows 95, Linux, MAC OSX; on CD-ROM	A	6ED1 058-0BA00-0YAO	1 unit	0.100
LOGO! Soft Comfort Upgrade for V1.0 and higher on V4.0	A	6ED1 058-0CA00-0YE0	1 unit	0.100
LOGO! PC cable for transferring programs between LOGO! and PC	A	6ED1 057-1AA00-0BA0	1 unit	0.168
LOGO! News Box, 12/24 V contains LOGO! 12/24RC, LOGO! PC cable, LOGO!Soft Comfort, Tips\&Tricks manual, screw driver, information material - German - English	A A	6ED1 057-3BA00-0AA3 6ED1 057-3BA00-0BA3	1 unit 1 unit	$\begin{aligned} & 2.200 \\ & 2.200 \end{aligned}$
LOGO! News Box, 230V contains LOGO! 230RC, LOGO! PC cable, LOGO!Soft Comfort, Tips\&Tricks manual, screw driver, information material - German - English	A	6ED1 057-3AA00-0AA8 6ED1 057-3AA00-0BA8	1 unit 1 unit	$\begin{aligned} & 2.200 \\ & 2.340 \end{aligned}$

LOGO! Logic Modules

LOGO! modular pure variants

Overview

The cost-effective pure variants

- With integrated interface for connecting extension modules

Design

- Relay outputs with up to 10 A output signal
- Integrated basic and special functions
- Integrated EEPROM for storing control program and setpoints
- Optional programming module
- Integrated clock with automatic summertime/wintertime changeover
- 130 function blocks can be combined
- 8 digital inputs, 4 digital outputs
- 2 inputs as analog inputs for DC 12/24 V versions (0 to 10 V); can also be used as digital inputs
- 2 inputs for counting up to 2 kHz can be used (for DC variants only)
- Interface for connecting expansion modules, max. 24 digital inputs, 16 digital outputs and 8 analog inputs can be addressed

Functions

- Basic functions:
- AND, OR, NOT, NAND, NOR, XOR
- Positive/negative edge evaluation
- Special functions:
- ON delay
- Latching ON delay
- OFF delay
- Pulse relay
- Latching relay
- Clock-pulse relay
- Counter (forwards/backwards)
- Time switch
- Interval time-delay relay
- Working hour meter
- Threshold switch
- Asynchronous pulse encoder
- Twelve-month time switch
- Easy-to-use switch function
- Random generator
- Staircase lighting function acc. to DIN 18015-2
- Edge-triggered interval time-delay relay
- Combined ON/OFF delay
- Analog comparator
- Analog threshold switch
- Analog delta threshold switch
- Analog watchdog
- Analog amplifier
- Text and variable display
- Shift register
- Softkey function
- 24 flags (including start-up flag)
- Integrated retentivity
- Password protection

Optional functions

- Additional know-how protection with the optional program module

LOGO! Logic Modules

LOGO! modular pure variants

Selection and ordering data

Version	DT	Order No.	PS*	Weight per PU approx.
			kg	
LOGO! logic module 240 Supply voltage DC 24 V , 8 digital inputs DC 24 V , of which 2 can be used as analog inputs (0 to 10 V), 4 digital outputs DC $24 \mathrm{~V}, 0.3 \mathrm{~A}$; Without display and keyboard; 130 function blocks can be combined, modular expandability	A	6ED1 052-2CC00-0BA4	1 unit	0.172
LOGO! logic module 12/24RCo Supply voltage DC 12/24 V, 8 digital inputs DC12/ 24 V , of which 2 can be used as analog inputs (0 to 10 V), 4 relay outputs 10 A , Integrated time switch; Without display and keyboard; 130 function blocks can be combined, modular expandability	A	6ED1 052-2MD00-0BA4	1 unit	0.216
LOGO! logic module 24RCo Supply voltage AC/DC 24 V , 8 digital inputs AC/DC 24 V , 4 relay outputs 10 A , Integrated time switch; Without display and keyboard; 130 function blocks can be combined, modular expandability	A	6ED1 052-2HB00-0BA4	1 unit	0.218
LOGO! logic module 230RCo Supply voltage AC/DC 115/230 V, 8 digital inputs AC/DC 115/230 V, 4 relay outputs 10 A , integrated time switch; Without display and keyboard; 130 function blocks can be combined, modular expandability	A	6ED1 052-2FB00-0BA4	1 unit	0.221

Accessories				
LOGO! Manual - German - English - French - Spanish - Italian	$\begin{aligned} & A \\ & A \\ & \text { X } \\ & \text { X } \\ & \text { X } \end{aligned}$	6ED1 050-1AA00-0AE5 6ED1 050-1AA00-0BE5 6ED1 050-1AA00-0CE5 6ED1 050-1AA00-0DE5 6ED1 050-1AA00-0EE5	1 unit 1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & 0.353 \\ & 0.359 \\ & 0.353 \\ & 0.353 \\ & 0.353 \end{aligned}$
LOGO! Memory card for copying with know-how protection	A	6ED1 056-5CA00-0BAO	1 unit	0.003
LOGO! Soft Comfort V4.0 for programming on the PC in LAD/FBD; runs on Windows 95, Linux, MAC OSX; on CD-ROM	A	6ED1 058-0BA00-0YAO	1 unit	0.100
LOGO! Soft Comfort Upgrade for V1.0 and higher on V4.0	A	6ED1 058-0CA00-0YE0	1 unit	0.100
LOGO! PC cable for transferring programs between LOGO! and PC	A	6ED1 057-1AA00-0BAO	1 unit	0.168
LOGO! News Box, 12/24 V contains LOGO! 12/24RC, LOGO! PC cable, LOGO!Soft Comfort, Tips\&Tricks manual, screw driver, information material - German - English	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	6ED1 057-3BA00-0AA3 6ED1 057-3BA00-0BA3	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 2.200 \\ & 2.200 \end{aligned}$
LOGO! News Box, 230 V contains LOGO! 230RC, LOGO! PC cable, LOGO!Soft Comfort, Tips\&Tricks manual, screw driver, information material - German - English	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	6ED1 057-3AA00-0AA8 6ED1 057-3AA00-0BA8	1 unit 1 unit	$\begin{aligned} & 2.200 \\ & 2.340 \end{aligned}$

LOGO! Logic Modules

LOGO! modular extension modules

Design

- Relay outputs with up to 5 A output signal
- 4 digital inputs, 4 digital outputs or 2 analog inputs
- Interface for connection of LOGO! Modular logic modules

Overview

—

Expansion modules for connection of LOGO! Modular

- With digital inputs and outputs or analog inputs

Selection and ordering data

Version	DT	Order No.	PS*	Weight per PU approx.
			kg	
LOGO! DM8 24 Supply voltage DC $24 \mathrm{~V}, 4$ digital inputs DC 24 V , 4 digital outputs DC $24 \mathrm{~V}, 0.3 \mathrm{~A}$	A	6ED1 055-1CB00-0BAO	1 unit	0.120
LOGO! DM8 12/24R Supply voltage DC 12/24 V, 4 digital inputs DC 12/24 V, 4 relay outputs 5 A	A	6ED1 055-1MB00-0BA1	1 unit	0.157
LOGO! DM8 24R Supply voltage AC/DC 24 V , 4 digital inputs AC/DC 24 V , 4 relay outputs 5 A	A	6ED1 055-1HB00-0BAO	1 unit	0.157
LOGO! DM8 230R Supply voltage AC/DC 115/230 V, 4 digital inputs AC/DC 115/230 V, 4 relay outputs 5 A	A	6ED1 055-1FB00-0BA1	1 unit	0.160
LOGO! AM2 Supply voltage DC $12 / 24 \mathrm{~V}$, 2 analog inputs 0 to 10 V or 0 to 20 mA , 10-bit resolution	A	6ED1 055-1MA00-0BAO	1 unit	0.112
LOGO! AM2 PT 100 Supply voltage DC 12/24 V, 2 analog inputs Pt100, temperature range $-50^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	A	6ED1 055-1MD00-0BAO	1 unit	0.123
Accessories				
LOGO! Manual - German - English - French - Spanish - Italian	$\begin{aligned} & A \\ & A \\ & X \\ & X \\ & X \\ & X \end{aligned}$	6ED1 050-1AA00-0AE5 6ED1 050-1AA00-0BE5 6ED1 050-1AA00-0CE5 6ED1 050-1AA00-0DE5 6ED1 050-1AA00-0EE5	1 unit 1 unit 1 unit 1 unit 1 unit	0.353 0.359 0.353 0.353 0.353
LOGO! Memory card for copying with know-how protection	A	6ED1 056-5CA00-0BAO	1 unit	0.003
LOGO!Soft Comfort V4.0 for programming on the PC in LAD/FBD; runs on Windows 95, Linux, MAC OSX; on CD-ROM	A	6ED1 058-0BA00-0YAO	1 unit	0.100
LOGO!Soft Comfort Upgrade for V1.0 and higher on V4.0	A	6ED1 058-0CA00-0YE0	1 unit	0.100
LOGO! PC cable for transferring programs between LOGO! and PC	A	6ED1 057-1AA00-0BAO	1 unit	0.168
LOGO! News Box, 12/24 V contains LOGO! 12/24RC, LOGO! PC cable, LOGO!Soft Comfort, Tips\&Tricks manual, screw driver, information material - German - English	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	6ED1 057-3BA00-0AA3 6ED1 057-3BA00-0BA3	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \\ & \hline \end{aligned}$	$\begin{aligned} & 2.200 \\ & 2.200 \\ & \hline \end{aligned}$
LOGO! News Box, 230V contains LOGO! 230RC, LOGO! PC cable, LOGO!Soft Comfort, Tips\&Tricks manual, screw driver, information material - German - English	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	6ED1 057-3AA00-0AA8 6ED1 057-3AA00-0BA8	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 2.200 \\ & 2.340 \end{aligned}$

LOGO! Logic Modules

LOGO! modular communications modules

Overview

Expansion module for the LOGO! basic variants

- For communication between the LOGO! master and external EIB components via E / B

Area of application

The CM EIB/KNX communication module allows communication between the LOGO! master and external EIB components via $E I B$. The module can be used to integrate LOGO! into an EIB system.
The module is connected to the LOGO! basic variants as an expansion module.

Design

- Up to 16 digital inputs (virtual)
- Up to 12 digital outputs (virtual)
- Up to 8 analog inputs (virtual)
- For mounting onto 35 mm standard rail
-Width: 2 modular widths

Functions

- For communication between the LOGO! master and external EIB components via EIB
- Stations on the EIB; allow LOGO! to communicate with other EIB components by exchanging EIB message frames
- Output of the current states of the configured EIB stations for LOGO!;
the control can combine these with the help of its logical functions and timers.
- Parameters can be set, changed or combined quickly an easily using LOGO! without the need for a programming device.

Selection and ordering data

Version	DT	Order No.	PS*	Weight per PU approx.
				kg
LOGO! communication module CM EIB KNX for connection to EIB, supply voltage DC 24 V	B	6BK1 700-0BA00-0AA0	1 unit	0.050

LOGO! Logic Modules

Area of application

LOGO!Contact is a switching module for direct switching of resistive loads up (to 20 A) and motors (up to 4 kW). LOGO!Contact operates hum-free without noise pollution.
LOGO!Contact is universal

- Buildings/electrical installations
- Industry and commerce

Design

LOGO!Contact is available in two variants:

- Operating voltage DC 24 V
- Operating voltage AC 230 V, 50/60 Hz

Switching module for switching resistive loads and motors

 directlySelection and ordering data

Version	DT	Order No.	PS*	Weight per PU approx.
				kg
LOGO!Contact				
Switching module for direct switching of resistive loads up to 20 A and motors up to 4 kW				
- Operating voltage 24 V	A	6ED1 057-4CA00-0AAO	1 unit	0.160
- Operating voltage 230 V	A	6ED1 057-4EA00-0AA0	1 unit	0.160

LOGO!Soft

Overview

The user-friendly software for switchgear program generation on the PC

- Switchgear program generation for function diagrams (FBD) or contact diagrams (LAD)
- Additional testing, simulation, online testing and archiving of the switchgear programs
- Professional documentation with the help of various comment and print functions

Area of application

LOGO!Soft Comfort is the multilingual software for switchgear program generation with LOGO! on the PC. How to place the functions on the drawing board by means of "Drag and Drop" is almost self-explanatory. The integrated offline simulation allows the switchgear programs to be tested on the PC beforehand. During the online test the current values for LOGO! are displayed on screen.
Various print options permit professional documentation.
LOGO!Soft Comfort V4.0 can be used to program all components of the LOGO! family.

Design

The connection between LOGO! and the PC is established with the help of the LOGO! PC cable (serial interface)

Minimum system requirements:

Windows 95/98, NT 4.0, ME, 2000 or XP

- Pentium PC
- 90 MB free on hard disk
- 64 MB RAM
- SVGA graphics card with minimum 800×600 resolution (256 colors)

Mac OS X

- PowerMac G3, G4, G4 Cube, IMac, PowerBook G3, G4 or iBook
Linux (tested with Caldera OpenLinux 2.4)
- Runs on all Linux releases on which Java 2 SDK Version 1.3.1 runs
- Please consult your Linux release for hardware requirements.

Functions

- Control program generation with the programming languages

FBD and LAD (switchable)

- Comprehensive documentation functions
- Program simulation (offline)
- Program test (online)
- Comprehensive, context-sensitive online help functions

The following functions are available:

- Basic functions (AND, OR, NOT, NAND, NOR, XOR, positive edge evaluation, negative edge evaluation)
- ON delay
- OFF delay
- Current impulse relay
- Latching
- Clock-pulse relay
- Latching ON delay
- Working hour meter
- Interval time-delay relay/pulse output mode
- Up/down counter
- Threshold switch
- Pulse encoder
- Twelve-month time switch
- Time switch
- ON/OFF delay
- Random generator
- Edge-triggered interval time-delay relay
- Analog threshold switch
- Analog comparator
- Analog delta threshold switch
- Analog watchdog
- Analog amplifier
- Staircase lighting switch
- Easy-to-use switch
- Message texts
- Shift register
- Softkey

Selection and ordering data

Version	DT	Order No.	PS*	Weight per PU approx.
				kg
LOGO!Soft Comfort V4.0 for programming on the PC in LAD/FBD; runs on Windows 95, Linux, MAC OSX; on CD-ROM	A	6ED1 058-0BA00-0YA0	1 unit	0.100
LOGO!Soft Comfort Upgrade for V1.0 and higher on V4.0	A	6ED1 058-0CA00-0YE0	1 unit	0.100

AS-Interface

System overview

Overview

AS-Interface - The System

AS-Interface - Just another bus system?
AS-Interface has been available since 1994. It allows digital and analog signals generated by processes or machines to be transferred in binary form. AS interface is the universal interface between the higher-level control level and simple binary actuators and sensors
Why was AS-Interface developed?
High costs due to immense wiring outlays, which resulted from connecting the field level to the PLCs, demanded a structural change in automation technology:

Every single actuator or sensor had to be connected to the control unit and a power supply.
This not only resulted in significant material and wiring costs, but also increased the number of possible causes for faults. Until 1997, 36 \% of all machine and plant downtimes were due to installation faults.

The solution is distributed technology -
first in automation technology, but also in drive and control technology.
What does this mean? It's very simple: conventional, high-cost parallel wiring has been replaced with a serial fieldbus i.e. a twowire conductor with which all automation stations are connected.

AS-Interface configuration example

System overview

Benefits

Your advantages at a glance

	Rating	Your advantages
Minimal wiring overhead	A single cable is sufficient for wiring up sensors, actuators, and operator panels. Simple serial connection to the control unit via AS-Inter- face instead of a parallel connection with many cables!	- Material savings - Less space required in the control cabinets
Fast installation	Sensors and actuators are easily installed with modules connected to the AS-Interface cable. Contact blades in the modules penetrate the insulation of the cable and make contact with the copper conductor.	Minimum time required for installation.
Safe installation	Reversed polarity is virtually impossible due to the geometry of the cable and the insulation piercing method used during installation.	No wasted time or money due to wrong installation or plant downtimes.
Flexible engineering	Distributed and modular installation allows partial solutions to be tested in parallel before the overall solution has been implemented. Changes and expansions can be implemented flexibly.	Saves time for new installations and allows flexibility for existing plants.
Open system	AS-Interface is an open system according to international standard EN 50295.	AS-Interface is a multi-vendor, future-oriented system. Siemens offers the complete system with all products for complete solutions with AS-Interface.

Technical specifications

Up to 31 slaves can be connected to a single standard AS-Interface system. Each slave can have up to 4 inputs and 4 outputs (in total therefore up to 124 inputs and 124 outputs).
According to extended AS-Interface specification 2.1, up to 62 A/B slaves can be connected to a single AS-Interface system. These have up to 4 inputs and 3 outputs (i.e. up to 248 inputs and 186 outputs within a single AS-Interface system).

Intelligent sensors with integrated AS-Interface chips are given their own slave address and behave like "normal" slaves withrespect to the master.

General data	$31 / \mathrm{up}$ to 62
Number of slaves	248 inputs +186 outputs
Number of inputs/outputs	Data and supply up to 7 A
Signals	Non-shielded cable $2 \times 1.5 \mathrm{~mm}^{2}$
Medium	$5 / 10 \mathrm{~ms}$
Maximum cycle time	Integrated into the master
Analog value transfer	124 analog values per 16 bits
Number of analog values	Master/slave
Access control	100 m, with repeater up to 500 m
Cable length	Up to Category 4 acc. to EN $954-1$
Safety at Work safety technology	

AS-Interface

System overview

Further information

We have adapted our catalog structure to current developments.
This has resulted in several changes.
Our AS-Interface core products can now be found in Catalog IK PI (Order No. E86060-K6710-A101-B3-7600).

The table below lists in detail in which catalog our AS-Interface products can be found.

To order our catalogs, please use a fax ordering form ${ }^{1)}$ or contact your local Siemens representative.

1) See Appendix -> Fax Order - Simply copy it, fill it in, and fax it

[^0]: _ $I_{\max }$ Thermal limit current for individual mounting

 - — - $I_{\max }$ Thermal limit current for side-by-side mounting
 __ $I_{\text {IEC Current acc. to IEC } 947-4-3 \text { for individual mounting }}$
 - - - $I_{\text {IEC }}$ Current acc. to IEC 947-4-3 for side-by-side mounting

[^1]: 1) With SW1-4, the fault contact can be switched over between normally closed and normally open.
[^2]: 1) Due to thermal expansion of the bars, flexible links must be used for connecting the busbars.
[^3]: 1) Drilling template
[^4]: 1）The current adjustment range from 0.25 to 1.25 A is attained by looping the main conducting paths

